File size: 6,228 Bytes
064752a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import torch
from transformers import PreTrainedModel, GenerationConfig, BertLMHeadModel
from transformers.modeling_outputs import Seq2SeqLMOutput
from torch import nn
from torch.nn import CrossEntropyLoss
from typing import Optional, Tuple, Union
from torch.utils.data import Dataset
from PIL import Image

class MyModel(PreTrainedModel):
    def __init__(self, config, trans_model, nougat_model):
        super().__init__(config)
        self.encoder = nougat_model.encoder
        self.decoder = trans_model.decoder
        self.project = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)
        
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict=True,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
        
        encoder_outputs = self.encoder(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        encoder_hidden_states = encoder_outputs.last_hidden_state
        encoder_hidden_states_proj = self.project(encoder_hidden_states)
        
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states_proj,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
        )

        # Compute loss independent from decoder (as some shift the logits inside them)
        loss = None
        if labels is not None:
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
            loss_fct_trans = CrossEntropyLoss()
            loss_trans = loss_fct_trans(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1).long())
            
            loss = loss_trans

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_hidden_states,
        )
    
    def generate(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict=True,
        generation_config: Optional[GenerationConfig] = None,
        **kwargs,
    ):
        
        encoder_outputs = self.encoder(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        encoder_hidden_states = encoder_outputs.last_hidden_state
        encoder_hidden_states_proj = self.project(encoder_hidden_states)
        
        generation_outputs = self.decoder.generate(
            encoder_hidden_states=encoder_hidden_states_proj,
            generation_config=generation_config,
        )
        
        return generation_outputs

class MyDataset(Dataset):
    def __init__(self, processor, tokenizer, name_list, max_length, image_dir, text_dir):
        self.processor = processor
        self.tokenizer = tokenizer
        self.name_list = name_list
        self.max_length = max_length
        self.image_dir = image_dir
        self.text_dir = text_dir
    
    def __len__(self):
        return len(self.name_list)
    
    def __getitem__(self, index):
        encoding = {}
        image_file_path = os.path.join(self.image_dir, self.name_list[index]+'.png')
        image = Image.open(image_file_path)
        if image.mode != 'RGB':
            image = image.convert('RGB')
        pixel_values = self.processor(image, return_tensors="pt").pixel_values.squeeze(0)
        encoding['pixel_values'] = pixel_values
        
        text_file_path = os.path.join(self.text_dir, self.name_list[index]+'.mmd')
        with open(text_file_path, 'r') as f:
            lines = f.readlines()
        text = ''.join(lines)
        input_ids = self.tokenizer(text, max_length=self.max_length, truncation=True).input_ids
        input_ids = [x for x in input_ids if x != 6]
        input_ids = [self.tokenizer.bos_token_id] + input_ids[1:]
        
        decoder_input_ids = input_ids + [self.tokenizer.pad_token_id]*(self.max_length-len(input_ids))
        decoder_input_ids = torch.tensor(decoder_input_ids, dtype=torch.long)
        labels = input_ids[1:] + [-100]*(self.max_length-len(input_ids)+1)
        labels = torch.tensor(labels, dtype=torch.long)
        encoding['decoder_input_ids'] = decoder_input_ids
        encoding['labels'] = labels
        
        return encoding