File size: 2,296 Bytes
baded3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: peft
license: llama3
base_model: unsloth/llama-3-8b-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 4e981743-2631-4bbc-bbd3-c206d153db88
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 4e981743-2631-4bbc-bbd3-c206d153db88
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1732
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000211
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0000 | 1 | 1.8842 |
| 1.3818 | 0.0008 | 50 | 1.3631 |
| 1.5215 | 0.0015 | 100 | 1.3458 |
| 1.3823 | 0.0023 | 150 | 1.3206 |
| 1.3505 | 0.0030 | 200 | 1.3038 |
| 1.3068 | 0.0038 | 250 | 1.2655 |
| 1.4312 | 0.0045 | 300 | 1.2388 |
| 1.2387 | 0.0053 | 350 | 1.1994 |
| 1.2386 | 0.0060 | 400 | 1.1871 |
| 1.2862 | 0.0068 | 450 | 1.1761 |
| 1.2417 | 0.0075 | 500 | 1.1732 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |