File size: 2,274 Bytes
ef5d31f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: peft
license: mit
base_model: numind/NuExtract-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e78cbcf5-a7ab-476b-b2ad-a344475d3d47
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# e78cbcf5-a7ab-476b-b2ad-a344475d3d47
This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7836
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00021
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 1.9060 |
| 4.0056 | 0.0062 | 50 | 1.8324 |
| 3.799 | 0.0124 | 100 | 1.8217 |
| 3.9889 | 0.0186 | 150 | 1.8094 |
| 3.8805 | 0.0248 | 200 | 1.8063 |
| 3.9561 | 0.0309 | 250 | 1.8012 |
| 3.9048 | 0.0371 | 300 | 1.7920 |
| 3.9272 | 0.0433 | 350 | 1.7879 |
| 3.79 | 0.0495 | 400 | 1.7847 |
| 3.8634 | 0.0557 | 450 | 1.7835 |
| 3.8812 | 0.0619 | 500 | 1.7836 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |