File size: 2,317 Bytes
5c1a907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: peft
license: gpl
base_model: NousResearch/GPT4-x-Vicuna-13b-fp16
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 01efdd42-cc93-4498-8836-5416e798b1c6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>

# 01efdd42-cc93-4498-8836-5416e798b1c6

This model is a fine-tuned version of [NousResearch/GPT4-x-Vicuna-13b-fp16](https://huggingface.co/NousResearch/GPT4-x-Vicuna-13b-fp16) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2513

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.000208
- train_batch_size: 4
- eval_batch_size: 4
- seed: 80
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0008 | 1    | 2.9869          |
| 2.6371        | 0.0419 | 50   | 2.4640          |
| 2.5372        | 0.0839 | 100  | 2.5468          |
| 2.5542        | 0.1258 | 150  | 2.4662          |
| 2.5761        | 0.1677 | 200  | 2.4173          |
| 2.6806        | 0.2096 | 250  | 2.3430          |
| 2.5811        | 0.2516 | 300  | 2.3232          |
| 2.3769        | 0.2935 | 350  | 2.2691          |
| 2.5571        | 0.3354 | 400  | 2.2556          |
| 2.629         | 0.3774 | 450  | 2.2486          |
| 2.5459        | 0.4193 | 500  | 2.2513          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1