--- library_name: peft license: gpl base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 1f9fa553-bdd8-444e-a1f4-81a2761116d6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 bf16: true chat_template: llama3 datasets: - data_files: - d72a1ef5403e09b8_train_data.json ds_type: json format: custom path: /workspace/input_data/d72a1ef5403e09b8_train_data.json type: field_instruction: instructions field_output: target_responses format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/1f9fa553-bdd8-444e-a1f4-81a2761116d6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/d72a1ef5403e09b8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6951f5f9-4e07-429e-bbd8-c7fb2398dcfd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6951f5f9-4e07-429e-bbd8-c7fb2398dcfd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 1f9fa553-bdd8-444e-a1f4-81a2761116d6 This model is a fine-tuned version of [NousResearch/GPT4-x-Vicuna-13b-fp16](https://huggingface.co/NousResearch/GPT4-x-Vicuna-13b-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7704 | 0.0047 | 1 | 1.7595 | | 1.7268 | 0.0234 | 5 | 1.7444 | | 1.9494 | 0.0468 | 10 | 1.5034 | | 1.2833 | 0.0702 | 15 | 1.2019 | | 0.903 | 0.0936 | 20 | 1.0198 | | 0.9426 | 0.1170 | 25 | 0.9814 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1