---
library_name: peft
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: c3cd10fd-4f32-419f-a445-d2d1cd850e9f
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
auto_find_batch_size: true
base_model: lmsys/vicuna-7b-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 7007812045375657_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7007812045375657_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso04/c3cd10fd-4f32-419f-a445-d2d1cd850e9f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000204
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/7007812045375657_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2a7520a5-b309-4628-8e84-793151b44892
wandb_project: 04a
wandb_run: your_name
wandb_runid: 2a7520a5-b309-4628-8e84-793151b44892
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
```
# c3cd10fd-4f32-419f-a445-d2d1cd850e9f
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9151
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000204
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0008 | 1 | 1.1151 |
| 1.0892 | 0.0400 | 50 | 1.0019 |
| 1.0308 | 0.0799 | 100 | 0.9805 |
| 1.0422 | 0.1199 | 150 | 0.9733 |
| 1.0099 | 0.1599 | 200 | 0.9468 |
| 1.0221 | 0.1998 | 250 | 0.9447 |
| 0.991 | 0.2398 | 300 | 0.9229 |
| 0.9879 | 0.2798 | 350 | 0.9188 |
| 0.981 | 0.3197 | 400 | 0.9123 |
| 0.9851 | 0.3597 | 450 | 0.9104 |
| 0.9026 | 0.3997 | 500 | 0.9151 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1