--- library_name: peft license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: c3cd10fd-4f32-419f-a445-d2d1cd850e9f results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: lmsys/vicuna-7b-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7007812045375657_train_data.json ds_type: json format: custom path: /workspace/input_data/7007812045375657_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso04/c3cd10fd-4f32-419f-a445-d2d1cd850e9f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000204 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/G.O.D/7007812045375657_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2a7520a5-b309-4628-8e84-793151b44892 wandb_project: 04a wandb_run: your_name wandb_runid: 2a7520a5-b309-4628-8e84-793151b44892 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# c3cd10fd-4f32-419f-a445-d2d1cd850e9f This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000204 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | 1.1151 | | 1.0892 | 0.0400 | 50 | 1.0019 | | 1.0308 | 0.0799 | 100 | 0.9805 | | 1.0422 | 0.1199 | 150 | 0.9733 | | 1.0099 | 0.1599 | 200 | 0.9468 | | 1.0221 | 0.1998 | 250 | 0.9447 | | 0.991 | 0.2398 | 300 | 0.9229 | | 0.9879 | 0.2798 | 350 | 0.9188 | | 0.981 | 0.3197 | 400 | 0.9123 | | 0.9851 | 0.3597 | 450 | 0.9104 | | 0.9026 | 0.3997 | 500 | 0.9151 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1