File size: 2,275 Bytes
3ce6533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: peft
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: c3cd10fd-4f32-419f-a445-d2d1cd850e9f
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>

# c3cd10fd-4f32-419f-a445-d2d1cd850e9f

This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9151

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.000204
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0008 | 1    | 1.1151          |
| 1.0892        | 0.0400 | 50   | 1.0019          |
| 1.0308        | 0.0799 | 100  | 0.9805          |
| 1.0422        | 0.1199 | 150  | 0.9733          |
| 1.0099        | 0.1599 | 200  | 0.9468          |
| 1.0221        | 0.1998 | 250  | 0.9447          |
| 0.991         | 0.2398 | 300  | 0.9229          |
| 0.9879        | 0.2798 | 350  | 0.9188          |
| 0.981         | 0.3197 | 400  | 0.9123          |
| 0.9851        | 0.3597 | 450  | 0.9104          |
| 0.9026        | 0.3997 | 500  | 0.9151          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1