--- library_name: peft base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B tags: - axolotl - generated_from_trainer model-index: - name: acf64dce-cea8-4814-a6b7-8431a0af1247 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
# acf64dce-cea8-4814-a6b7-8431a0af1247 This model is a fine-tuned version of [Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000203 - train_batch_size: 4 - eval_batch_size: 4 - seed: 30 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 1.6953 | | 0.5842 | 0.0307 | 50 | 0.7501 | | 0.579 | 0.0613 | 100 | 0.7242 | | 0.5286 | 0.0920 | 150 | 0.5108 | | 0.4783 | 0.1226 | 200 | 0.4689 | | 0.345 | 0.1533 | 250 | 0.4471 | | 0.3257 | 0.1839 | 300 | 0.3584 | | 0.3528 | 0.2146 | 350 | 0.2692 | | 0.2959 | 0.2452 | 400 | 0.2352 | | 0.3381 | 0.2759 | 450 | 0.2182 | | 0.2557 | 0.3066 | 500 | 0.2162 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1