File size: 2,048 Bytes
30fb9b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

library_name: peft
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2625711f-b60a-44b6-bcaf-94355dc52daa
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>

# 2625711f-b60a-44b6-bcaf-94355dc52daa

This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3860

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001012

- train_batch_size: 4

- eval_batch_size: 4

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 10
- training_steps: 200



### Training results



| Training Loss | Epoch  | Step | Validation Loss |

|:-------------:|:------:|:----:|:---------------:|

| 2.4008        | 0.0003 | 1    | 1.7593          |

| 1.7109        | 0.0138 | 50   | 1.4664          |

| 1.619         | 0.0277 | 100  | 1.4342          |

| 1.769         | 0.0415 | 150  | 1.3988          |

| 1.7578        | 0.0553 | 200  | 1.3860          |





### Framework versions



- PEFT 0.13.2

- Transformers 4.46.0

- Pytorch 2.5.0+cu124

- Datasets 3.0.1

- Tokenizers 0.20.1