File size: 2,333 Bytes
98f9ade |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: distilbert-base-uncased
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0657
- Accuracy: {'accuracy': 0.7330827067669173}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|
| 0.9636 | 1.0 | 538 | 0.8582 | {'accuracy': 0.6992481203007519} |
| 0.7447 | 2.0 | 1076 | 1.0010 | {'accuracy': 0.7030075187969925} |
| 0.5876 | 3.0 | 1614 | 0.9129 | {'accuracy': 0.7142857142857143} |
| 0.4728 | 4.0 | 2152 | 1.1641 | {'accuracy': 0.7255639097744361} |
| 0.4145 | 5.0 | 2690 | 1.3646 | {'accuracy': 0.7330827067669173} |
| 0.2917 | 6.0 | 3228 | 1.4447 | {'accuracy': 0.7556390977443609} |
| 0.2485 | 7.0 | 3766 | 1.7574 | {'accuracy': 0.7330827067669173} |
| 0.1596 | 8.0 | 4304 | 1.9367 | {'accuracy': 0.7330827067669173} |
| 0.1468 | 9.0 | 4842 | 2.0091 | {'accuracy': 0.7368421052631579} |
| 0.1128 | 10.0 | 5380 | 2.0657 | {'accuracy': 0.7330827067669173} |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1 |