""" This is an example how to train SentenceTransformers in a multi-task setup. The system trains BERT on the AllNLI and on the STSbenchmark dataset. """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import * import logging from datetime import datetime import gzip import csv import os #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Read the dataset model_name = 'bert-base-uncased' batch_size = 16 model_save_path = 'output/training_multi-task_'+model_name+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") #Check if dataset exsist. If not, download and extract it nli_dataset_path = 'datasets/AllNLI.tsv.gz' sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' if not os.path.exists(nli_dataset_path): util.http_get('https://sbert.net/datasets/AllNLI.tsv.gz', nli_dataset_path) if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) # Use BERT for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_nli_samples = [] with gzip.open(nli_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['split'] == 'train': label_id = label2int[row['label']] train_nli_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=label_id)) train_dataloader_nli = DataLoader(train_nli_samples, shuffle=True, batch_size=batch_size) train_loss_nli = losses.SoftmaxLoss(model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int)) logging.info("Read STSbenchmark train dataset") train_sts_samples = [] dev_sts_samples = [] test_sts_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) if row['split'] == 'dev': dev_sts_samples.append(inp_example) elif row['split'] == 'test': test_sts_samples.append(inp_example) else: train_sts_samples.append(inp_example) train_dataloader_sts = DataLoader(train_sts_samples, shuffle=True, batch_size=batch_size) train_loss_sts = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_sts_samples, name='sts-dev') # Configure the training num_epochs = 4 warmup_steps = math.ceil(len(train_dataloader_sts) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Here we define the two train objectives: train_dataloader_nli with train_loss_nli (i.e., SoftmaxLoss for NLI data) # and train_dataloader_sts with train_loss_sts (i.e., CosineSimilarityLoss for STSbenchmark data) # You can pass as many (dataloader, loss) tuples as you like. They are iterated in a round-robin way. train_objectives = [(train_dataloader_nli, train_loss_nli), (train_dataloader_sts, train_loss_sts)] # Train the model model.fit(train_objectives=train_objectives, evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_sts_samples, name='sts-test') test_evaluator(model, output_path=model_save_path)