""" The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset with softmax loss function. At every 1000 training steps, the model is evaluated on the STS benchmark dataset Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout #Check if dataset exsist. If not, download and extract it nli_dataset_path = 'data/AllNLI.tsv.gz' sts_dataset_path = 'data/stsbenchmark.tsv.gz' if not os.path.exists(nli_dataset_path): util.http_get('https://sbert.net/datasets/AllNLI.tsv.gz', nli_dataset_path) if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) #You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased' # Read the dataset train_batch_size = 16 model_save_path = 'output/training_nli_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Read the AllNLI.tsv.gz file and create the training dataset logging.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] with gzip.open(nli_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['split'] == 'train': label_id = label2int[row['label']] train_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=label_id)) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.SoftmaxLoss(model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int)) #Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['split'] == 'dev': score = float(row['score']) / 5.0 #Normalize score to range 0 ... 1 dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, batch_size=train_batch_size, name='sts-dev') # Configure the training num_epochs = 1 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['split'] == 'test': score = float(row['score']) / 5.0 #Normalize score to range 0 ... 1 test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, batch_size=train_batch_size, name='sts-test') test_evaluator(model, output_path=model_save_path)