""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continious labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ from torch.utils.data import DataLoader import math from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator from sentence_transformers import InputExample import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) logger = logging.getLogger(__name__) #### /print debug information to stdout #Check if dataset exsist. If not, download and extract it sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) #Define our Cross-Encoder train_batch_size = 16 num_epochs = 4 model_save_path = 'output/training_stsbenchmark-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") #We use distilroberta-base as base model and set num_labels=1, which predicts a continous score between 0 and 1 model = CrossEncoder('distilroberta-base', num_labels=1) # Read STSb dataset logger.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 if row['split'] == 'dev': dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) elif row['split'] == 'test': test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) else: #As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set train_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) train_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score)) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path) ##### Load model and eval on test set model = CrossEncoder(model_save_path) evaluator = CECorrelationEvaluator.from_input_examples(test_samples, name='sts-test') evaluator(model)