import logging import os import csv from typing import List from ... import InputExample import numpy as np logger = logging.getLogger(__name__) class CEBinaryAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 1 outputs. It measure the accuracy of the predict class vs. the gold labels. It uses a fixed threshold to determine the label (0 vs 1). See CEBinaryClassificationEvaluator for an evaluator that determines automatically the optimal threshold. """ def __init__(self, sentence_pairs: List[List[str]], labels: List[int], name: str='', threshold: float = 0.5, write_csv: bool = True): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.threshold = threshold self.csv_file = "CEBinaryAccuracyEvaluator" + ("_" + name if name else '') + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = pred_scores > self.threshold assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc*100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else 'w', encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc