import torch from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers import SentenceTransformer, LoggingHandler, models, util, InputExample from sentence_transformers import losses import os import gzip import csv from datetime import datetime import logging #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout ## Training parameters model_name = 'distilbert-base-uncased' batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = 'output/train_stsb_ct-{}-{}'.format(model_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Train sentences ################# # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = 'data/wiki1m_for_simcse.txt' if not os.path.exists(wikipedia_dataset_path): util.http_get('https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt', wikipedia_dataset_path) # train_sentences are simply your list of sentences train_sentences = [] with open(wikipedia_dataset_path, 'r', encoding='utf8') as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) ################# Download and load STSb ################# data_folder = 'data/stsbenchmark' sts_dataset_path = f'{data_folder}/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) if row['split'] == 'dev': dev_samples.append(inp_example) elif row['split'] == 'test': test_samples.append(inp_example) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') ################# Intialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader(train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=1, evaluation_steps=1000, weight_decay=0, warmup_steps=0, optimizer_class=torch.optim.RMSprop, optimizer_params={'lr': 1e-5}, output_path=model_save_path, use_amp=False #Set to True, if your GPU has optimized FP16 cores ) ########### Load the model and evaluate on test set model = SentenceTransformer(model_save_path) test_evaluator(model)