from sentence_transformers import SentenceTransformer, LoggingHandler from sentence_transformers import models, util, evaluation, losses import logging import os import gzip from datetime import datetime import torch #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Some training parameters. We use a batch size of 16, for every positive example we include 8-1=7 negative examples # Sentences are truncated to 75 word pieces model_name = 'distilbert-base-uncased' batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio max_seq_length = 75 num_epochs = 1 ################# Download AskUbuntu and extract training corpus ################# askubuntu_folder = 'askubuntu' output_path = 'output/train_askubuntu_ct-{}-{}-{}'.format(model_name, batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ## Download the AskUbuntu dataset from https://github.com/taolei87/askubuntu for filename in ['text_tokenized.txt.gz', 'dev.txt', 'test.txt', 'train_random.txt']: filepath = os.path.join(askubuntu_folder, filename) if not os.path.exists(filepath): util.http_get('https://github.com/taolei87/askubuntu/raw/master/'+filename, filepath) # Read the corpus corpus = {} dev_test_ids = set() with gzip.open(os.path.join(askubuntu_folder, 'text_tokenized.txt.gz'), 'rt', encoding='utf8') as fIn: for line in fIn: splits = line.strip().split("\t") id = splits[0] title = splits[1] corpus[id] = title # Read dev & test dataset def read_eval_dataset(filepath): dataset = [] with open(filepath) as fIn: for line in fIn: query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") if len(relevant_id) == 0: #Skip examples without relevant entries continue relevant_id = relevant_id.split(" ") candidate_ids = candidate_ids.split(" ") negative_ids = set(candidate_ids) - set(relevant_id) dataset.append({ 'query': corpus[query_id], 'positive': [corpus[pid] for pid in relevant_id], 'negative': [corpus[pid] for pid in negative_ids] }) dev_test_ids.add(query_id) dev_test_ids.update(candidate_ids) return dataset dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, 'dev.txt')) test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, 'test.txt')) ## Now we need a list of train sentences. ## In this example we simply use all sentences that don't appear in the train/dev set train_sentences = [] for id, sentence in corpus.items(): if id not in dev_test_ids: train_sentences.append(sentence) logging.info("{} train sentences".format(len(train_sentences))) ################# Intialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train the model ################# # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader(train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) # Create a dev evaluator dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name='AskUbuntu dev') test_evaluator = evaluation.RerankingEvaluator(test_dataset, name='AskUbuntu test') logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, warmup_steps=0, optimizer_class=torch.optim.RMSprop, optimizer_params={'lr': 1e-5}, use_amp=False #Set to True, if your GPU has optimized FP16 cores ) latest_output_path = output_path + "-latest" model.save(latest_output_path) ### Run test evaluation on the latest model. This is equivalent to not having a dev dataset model = SentenceTransformer(latest_output_path) test_evaluator(model)