import math from sentence_transformers import models, losses, datasets from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import sys import os import gzip import csv from MultiDatasetDataLoader import MultiDatasetDataLoader #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout model_name = 'distilroberta-base' num_epochs = 1 sts_dataset_path = 'data-eval/stsbenchmark.tsv.gz' batch_size_pairs = 384 batch_size_triplets = 256 max_seq_length = 128 use_amp = True #Set to False, if you use a CPU or your GPU does not support FP16 operations evaluation_steps = 500 warmup_steps = 500 ##### if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) # Save path of the model model_save_path = 'output/training_paraphrases_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ## SentenceTransformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) datasets = [] for filepath in sys.argv[1:]: dataset = [] with_guid = 'with-guid' in filepath #Some datasets have a guid in the first column with gzip.open(filepath, 'rt', encoding='utf8') as fIn: for line in fIn: splits = line.strip().split("\t") if with_guid: guid = splits[0] texts = splits[1:] else: guid = None texts = splits dataset.append(InputExample(texts=texts, guid=guid)) datasets.append(dataset) train_dataloader = MultiDatasetDataLoader(datasets, batch_size_pairs=batch_size_pairs, batch_size_triplets=batch_size_triplets) # Our training loss train_loss = losses.MultipleNegativesRankingLoss(model) #Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: if row['split'] == 'dev': score = float(row['score']) / 5.0 #Normalize score to range 0 ... 1 dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, warmup_steps=warmup_steps, output_path=model_save_path, use_amp=use_amp, checkpoint_path=model_save_path, checkpoint_save_steps=1000, checkpoint_save_total_limit=3 )