""" This examples trains a CrossEncoder for the Quora Duplicate Questions Detection task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continious labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_quora_duplicate_questions.py """ from torch.utils.data import DataLoader import math from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEBinaryClassificationEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import os import gzip import csv from zipfile import ZipFile #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) logger = logging.getLogger(__name__) #### /print debug information to stdout #Check if dataset exsist. If not, download and extract it dataset_path = 'quora-dataset/' if not os.path.exists(dataset_path): logger.info("Dataset not found. Download") zip_save_path = 'quora-IR-dataset.zip' util.http_get(url='https://sbert.net/datasets/quora-IR-dataset.zip', path=zip_save_path) with ZipFile(zip_save_path, 'r') as zip: zip.extractall(dataset_path) # Read the quora dataset split for classification logger.info("Read train dataset") train_samples = [] with open(os.path.join(dataset_path, 'classification', 'train_pairs.tsv'), 'r', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: train_samples.append(InputExample(texts=[row['question1'], row['question2']], label=int(row['is_duplicate']))) train_samples.append(InputExample(texts=[row['question2'], row['question1']], label=int(row['is_duplicate']))) logger.info("Read dev dataset") dev_samples = [] with open(os.path.join(dataset_path, 'classification', 'dev_pairs.tsv'), 'r', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: dev_samples.append(InputExample(texts=[row['question1'], row['question2']], label=int(row['is_duplicate']))) #Configuration train_batch_size = 16 num_epochs = 4 model_save_path = 'output/training_quora-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") #We use distilroberta-base with a single label, i.e., it will output a value between 0 and 1 indicating the similarity of the two questions model = CrossEncoder('distilroberta-base', num_labels=1) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CEBinaryClassificationEvaluator.from_input_examples(dev_samples, name='Quora-dev') # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=5000, warmup_steps=warmup_steps, output_path=model_save_path)