""" This example uses a simple bag-of-words (BoW) approach. A sentence is mapped to a sparse vector with e.g. 25,000 dimensions. Optionally, you can also use tf-idf. To make the model trainable, we add multiple dense layers to create a Deep Averaging Network (DAN). """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses, util from sentence_transformers import LoggingHandler, SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import * from sentence_transformers.models.tokenizer.WordTokenizer import ENGLISH_STOP_WORDS import logging from datetime import datetime import os import csv import gzip #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Read the dataset batch_size = 32 model_save_path = 'output/training_tf-idf_word_embeddings-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") #Check if dataset exsist. If not, download and extract it sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) if row['split'] == 'dev': dev_samples.append(inp_example) elif row['split'] == 'test': test_samples.append(inp_example) else: train_samples.append(inp_example) ##### Construction of the SentenceTransformer Model ##### # Wikipedia document frequency for words wiki_doc_freq = 'wikipedia_doc_frequencies.txt' if not os.path.exists(wiki_doc_freq): util.http_get('https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/wikipedia_doc_frequencies.txt', wiki_doc_freq) # Create the vocab for the BoW model stop_words = ENGLISH_STOP_WORDS max_vocab_size = 25000 #This is also the size of the BoW sentence vector. #Read the most common max_vocab_size words. Skip stop-words vocab = set() weights = {} lines = open('wikipedia_doc_frequencies.txt', encoding='utf8').readlines() num_docs = int(lines[0]) for line in lines[1:]: word, freq = line.lower().strip().split("\t") if word in stop_words: continue vocab.add(word) weights[word] = math.log(num_docs/int(freq)) if len(vocab) >= max_vocab_size: break ##### Construction of the SentenceTransformer Model ##### #Create the BoW model. Because we set word_weights to the IDF values and cumulative_term_frequency=True, we #get tf-idf vectors. Set word_weights to an empty dict and cumulative_term_frequency=False to get a 1-hot sentence encoding bow = models.BoW(vocab=vocab, word_weights=weights, cumulative_term_frequency=True) # Add two trainable feed-forward networks (DAN) with max_vocab_size -> 768 -> 512 dimensions. sent_embeddings_dimension = max_vocab_size dan1 = models.Dense(in_features=sent_embeddings_dimension, out_features=768) dan2 = models.Dense(in_features=768, out_features=512) model = SentenceTransformer(modules=[bow, dan1, dan2]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training num_epochs = 10 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') model.evaluate(evaluator)