""" This examples loads a pre-trained model and evaluates it on the STSbenchmark dataset Usage: python evaluation_stsbenchmark.py OR python evaluation_stsbenchmark.py model_name """ from sentence_transformers import SentenceTransformer, util, LoggingHandler, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging import sys import torch import gzip import os import csv script_folder_path = os.path.dirname(os.path.realpath(__file__)) #Limit torch to 4 threads torch.set_num_threads(4) #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout model_name = sys.argv[1] if len(sys.argv) > 1 else 'stsb-distilroberta-base-v2' # Load a named sentence model (based on BERT). This will download the model from our server. # Alternatively, you can also pass a filepath to SentenceTransformer() model = SentenceTransformer(model_name) sts_dataset_path = 'data/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) if row['split'] == 'dev': dev_samples.append(inp_example) elif row['split'] == 'test': test_samples.append(inp_example) else: train_samples.append(inp_example) evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') model.evaluate(evaluator) evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') model.evaluate(evaluator)