lengocduc195's picture
pushNe
2359bda
import torch
from torch import Tensor
from torch import nn
from typing import Union, Tuple, List, Iterable, Dict
import os
import json
class WeightedLayerPooling(nn.Module):
"""
Token embeddings are weighted mean of their different hidden layer representations
"""
def __init__(self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights = None):
super(WeightedLayerPooling, self).__init__()
self.config_keys = ['word_embedding_dimension', 'layer_start', 'num_hidden_layers']
self.word_embedding_dimension = word_embedding_dimension
self.layer_start = layer_start
self.num_hidden_layers = num_hidden_layers
self.layer_weights = layer_weights if layer_weights is not None else nn.Parameter(torch.tensor([1] * (num_hidden_layers+1 - layer_start), dtype=torch.float))
def forward(self, features: Dict[str, Tensor]):
ft_all_layers = features['all_layer_embeddings']
all_layer_embedding = torch.stack(ft_all_layers)
all_layer_embedding = all_layer_embedding[self.layer_start:, :, :, :] # Start from 4th layers output
weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size())
weighted_average = (weight_factor*all_layer_embedding).sum(dim=0) / self.layer_weights.sum()
features.update({'token_embeddings': weighted_average})
return features
def get_word_embedding_dimension(self):
return self.word_embedding_dimension
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
def save(self, output_path):
with open(os.path.join(output_path, 'config.json'), 'w') as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin'))
@staticmethod
def load(input_path):
with open(os.path.join(input_path, 'config.json')) as fIn:
config = json.load(fIn)
model = WeightedLayerPooling(**config)
model.load_state_dict(torch.load(os.path.join(input_path, 'pytorch_model.bin'), map_location=torch.device('cpu')))
return model