lengocduc195's picture
pushNe
2359bda
from torch import nn
from transformers import AutoModel, AutoTokenizer, AutoConfig, T5Config, MT5Config
import json
from typing import List, Dict, Optional, Union, Tuple
import os
class Transformer(nn.Module):
"""Huggingface AutoModel to generate token embeddings.
Loads the correct class, e.g. BERT / RoBERTa etc.
:param model_name_or_path: Huggingface models name (https://huggingface.co/models)
:param max_seq_length: Truncate any inputs longer than max_seq_length
:param model_args: Arguments (key, value pairs) passed to the Huggingface Transformers model
:param cache_dir: Cache dir for Huggingface Transformers to store/load models
:param tokenizer_args: Arguments (key, value pairs) passed to the Huggingface Tokenizer model
:param do_lower_case: If true, lowercases the input (independent if the model is cased or not)
:param tokenizer_name_or_path: Name or path of the tokenizer. When None, then model_name_or_path is used
"""
def __init__(self, model_name_or_path: str, max_seq_length: Optional[int] = None,
model_args: Dict = {}, cache_dir: Optional[str] = None,
tokenizer_args: Dict = {}, do_lower_case: bool = False,
tokenizer_name_or_path : str = None):
super(Transformer, self).__init__()
self.config_keys = ['max_seq_length', 'do_lower_case']
self.do_lower_case = do_lower_case
config = AutoConfig.from_pretrained(model_name_or_path, **model_args, cache_dir=cache_dir)
self._load_model(model_name_or_path, config, cache_dir, **model_args)
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path, cache_dir=cache_dir, **tokenizer_args)
#No max_seq_length set. Try to infer from model
if max_seq_length is None:
if hasattr(self.auto_model, "config") and hasattr(self.auto_model.config, "max_position_embeddings") and hasattr(self.tokenizer, "model_max_length"):
max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)
self.max_seq_length = max_seq_length
if tokenizer_name_or_path is not None:
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
def _load_model(self, model_name_or_path, config, cache_dir, **model_args):
"""Loads the transformer model"""
if isinstance(config, T5Config):
self._load_t5_model(model_name_or_path, config, cache_dir, **model_args)
elif isinstance(config, MT5Config):
self._load_mt5_model(model_name_or_path, config, cache_dir, **model_args)
else:
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args)
def _load_t5_model(self, model_name_or_path, config, cache_dir, **model_args):
"""Loads the encoder model from T5"""
from transformers import T5EncoderModel
T5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"]
self.auto_model = T5EncoderModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args)
def _load_mt5_model(self, model_name_or_path, config, cache_dir, **model_args):
"""Loads the encoder model from T5"""
from transformers import MT5EncoderModel
MT5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"]
self.auto_model = MT5EncoderModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args)
def __repr__(self):
return "Transformer({}) with Transformer model: {} ".format(self.get_config_dict(), self.auto_model.__class__.__name__)
def forward(self, features):
"""Returns token_embeddings, cls_token"""
trans_features = {'input_ids': features['input_ids'], 'attention_mask': features['attention_mask']}
if 'token_type_ids' in features:
trans_features['token_type_ids'] = features['token_type_ids']
output_states = self.auto_model(**trans_features, return_dict=False)
output_tokens = output_states[0]
features.update({'token_embeddings': output_tokens, 'attention_mask': features['attention_mask']})
if self.auto_model.config.output_hidden_states:
all_layer_idx = 2
if len(output_states) < 3: #Some models only output last_hidden_states and all_hidden_states
all_layer_idx = 1
hidden_states = output_states[all_layer_idx]
features.update({'all_layer_embeddings': hidden_states})
return features
def get_word_embedding_dimension(self) -> int:
return self.auto_model.config.hidden_size
def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]):
"""
Tokenizes a text and maps tokens to token-ids
"""
output = {}
if isinstance(texts[0], str):
to_tokenize = [texts]
elif isinstance(texts[0], dict):
to_tokenize = []
output['text_keys'] = []
for lookup in texts:
text_key, text = next(iter(lookup.items()))
to_tokenize.append(text)
output['text_keys'].append(text_key)
to_tokenize = [to_tokenize]
else:
batch1, batch2 = [], []
for text_tuple in texts:
batch1.append(text_tuple[0])
batch2.append(text_tuple[1])
to_tokenize = [batch1, batch2]
#strip
to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]
#Lowercase
if self.do_lower_case:
to_tokenize = [[s.lower() for s in col] for col in to_tokenize]
output.update(self.tokenizer(*to_tokenize, padding=True, truncation='longest_first', return_tensors="pt", max_length=self.max_seq_length))
return output
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
def save(self, output_path: str):
self.auto_model.save_pretrained(output_path)
self.tokenizer.save_pretrained(output_path)
with open(os.path.join(output_path, 'sentence_bert_config.json'), 'w') as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
@staticmethod
def load(input_path: str):
#Old classes used other config names than 'sentence_bert_config.json'
for config_name in ['sentence_bert_config.json', 'sentence_roberta_config.json', 'sentence_distilbert_config.json', 'sentence_camembert_config.json', 'sentence_albert_config.json', 'sentence_xlm-roberta_config.json', 'sentence_xlnet_config.json']:
sbert_config_path = os.path.join(input_path, config_name)
if os.path.exists(sbert_config_path):
break
with open(sbert_config_path) as fIn:
config = json.load(fIn)
return Transformer(model_name_or_path=input_path, **config)