lengocduc195's picture
pushNe
2359bda
import torch
from torch import Tensor
from torch import nn
from typing import Union, Tuple, List, Iterable, Dict
import os
import json
class LayerNorm(nn.Module):
def __init__(self, dimension: int):
super(LayerNorm, self).__init__()
self.dimension = dimension
self.norm = nn.LayerNorm(dimension)
def forward(self, features: Dict[str, Tensor]):
features['sentence_embedding'] = self.norm(features['sentence_embedding'])
return features
def get_sentence_embedding_dimension(self):
return self.dimension
def save(self, output_path):
with open(os.path.join(output_path, 'config.json'), 'w') as fOut:
json.dump({'dimension': self.dimension}, fOut, indent=2)
torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin'))
@staticmethod
def load(input_path):
with open(os.path.join(input_path, 'config.json')) as fIn:
config = json.load(fIn)
model = LayerNorm(**config)
model.load_state_dict(torch.load(os.path.join(input_path, 'pytorch_model.bin'), map_location=torch.device('cpu')))
return model