SentenceTransformer / sentence_transformers /losses /BatchSemiHardTripletLoss.py
lengocduc195's picture
pushNe
2359bda
import torch
from torch import nn, Tensor
from typing import Union, Tuple, List, Iterable, Dict
from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction
from sentence_transformers.SentenceTransformer import SentenceTransformer
class BatchSemiHardTripletLoss(nn.Module):
"""
BatchSemiHardTripletLoss takes a batch with (label, sentence) pairs and computes the loss for all possible, valid
triplets, i.e., anchor and positive must have the same label, anchor and negative a different label. It then looks
for the semi hard positives and negatives.
The labels must be integers, with same label indicating sentences from the same class. You train dataset
must contain at least 2 examples per label class. The margin is computed automatically.
Source: https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py
Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737
Blog post: https://omoindrot.github.io/triplet-loss
:param model: SentenceTransformer model
:param distance_metric: Function that returns a distance between two emeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used
Example::
from sentence_transformers import SentenceTransformer, SentencesDataset, losses
from sentence_transformers.readers import InputExample
model = SentenceTransformer('distilbert-base-nli-mean-tokens')
train_examples = [InputExample(texts=['Sentence from class 0'], label=0), InputExample(texts=['Another sentence from class 0'], label=0),
InputExample(texts=['Sentence from class 1'], label=1), InputExample(texts=['Sentence from class 2'], label=2)]
train_dataset = SentencesDataset(train_examples, model)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size)
train_loss = losses.BatchSemiHardTripletLoss(model=model)
"""
def __init__(self, model: SentenceTransformer, distance_metric = BatchHardTripletLossDistanceFunction.eucledian_distance, margin: float = 5):
super(BatchSemiHardTripletLoss, self).__init__()
self.sentence_embedder = model
self.margin = margin
self.distance_metric = distance_metric
def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor):
rep = self.sentence_embedder(sentence_features[0])['sentence_embedding']
return self.batch_semi_hard_triplet_loss(labels, rep)
# Semi-Hard Triplet Loss
# Based on: https://github.com/tensorflow/addons/blob/master/tensorflow_addons/losses/triplet.py#L71
# Paper: FaceNet: A Unified Embedding for Face Recognition and Clustering: https://arxiv.org/pdf/1503.03832.pdf
def batch_semi_hard_triplet_loss(self, labels: Tensor, embeddings: Tensor) -> Tensor:
"""Build the triplet loss over a batch of embeddings.
We generate all the valid triplets and average the loss over the positive ones.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
Label_Sentence_Triplet: scalar tensor containing the triplet loss
"""
labels = labels.unsqueeze(1)
pdist_matrix = self.distance_metric(embeddings)
adjacency = labels == labels.t()
adjacency_not = ~adjacency
batch_size = torch.numel(labels)
pdist_matrix_tile = pdist_matrix.repeat([batch_size, 1])
mask = adjacency_not.repeat([batch_size, 1]) & (pdist_matrix_tile > torch.reshape(pdist_matrix.t(), [-1, 1]))
mask_final = torch.reshape(torch.sum(mask, 1, keepdims=True) > 0.0, [batch_size, batch_size])
mask_final = mask_final.t()
negatives_outside = torch.reshape(BatchSemiHardTripletLoss._masked_minimum(pdist_matrix_tile, mask), [batch_size, batch_size])
negatives_outside = negatives_outside.t()
negatives_inside = BatchSemiHardTripletLoss._masked_maximum(pdist_matrix, adjacency_not)
negatives_inside = negatives_inside.repeat([1, batch_size])
semi_hard_negatives = torch.where(mask_final, negatives_outside, negatives_inside)
loss_mat = (pdist_matrix - semi_hard_negatives) + self.margin
mask_positives = adjacency.float().to(labels.device) - torch.eye(batch_size, device=labels.device)
mask_positives = mask_positives.to(labels.device)
num_positives = torch.sum(mask_positives)
triplet_loss = torch.sum(torch.max(loss_mat * mask_positives, torch.tensor([0.0], device=labels.device))) / num_positives
return triplet_loss
@staticmethod
def _masked_minimum(data, mask, dim=1):
axis_maximums, _ = data.max(dim, keepdims=True)
masked_minimums = (data - axis_maximums) * mask
masked_minimums, _ = masked_minimums.min(dim, keepdims=True)
masked_minimums += axis_maximums
return masked_minimums
@staticmethod
def _masked_maximum(data, mask, dim=1):
axis_minimums, _ = data.min(dim, keepdims=True)
masked_maximums = (data - axis_minimums) * mask
masked_maximums, _ = masked_maximums.max(dim, keepdims=True)
masked_maximums += axis_minimums
return masked_maximums