SentenceTransformer / sentence_transformers /evaluation /EmbeddingSimilarityEvaluator.py
lengocduc195's picture
pushNe
2359bda
from . import SentenceEvaluator, SimilarityFunction
import logging
import os
import csv
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
from scipy.stats import pearsonr, spearmanr
import numpy as np
from typing import List
from ..readers import InputExample
logger = logging.getLogger(__name__)
class EmbeddingSimilarityEvaluator(SentenceEvaluator):
"""
Evaluate a model based on the similarity of the embeddings by calculating the Spearman and Pearson rank correlation
in comparison to the gold standard labels.
The metrics are the cosine similarity as well as euclidean and Manhattan distance
The returned score is the Spearman correlation with a specified metric.
The results are written in a CSV. If a CSV already exists, then values are appended.
"""
def __init__(self, sentences1: List[str], sentences2: List[str], scores: List[float], batch_size: int = 16, main_similarity: SimilarityFunction = None, name: str = '', show_progress_bar: bool = False, write_csv: bool = True):
"""
Constructs an evaluator based for the dataset
The labels need to indicate the similarity between the sentences.
:param sentences1: List with the first sentence in a pair
:param sentences2: List with the second sentence in a pair
:param scores: Similarity score between sentences1[i] and sentences2[i]
:param write_csv: Write results to a CSV file
"""
self.sentences1 = sentences1
self.sentences2 = sentences2
self.scores = scores
self.write_csv = write_csv
assert len(self.sentences1) == len(self.sentences2)
assert len(self.sentences1) == len(self.scores)
self.main_similarity = main_similarity
self.name = name
self.batch_size = batch_size
if show_progress_bar is None:
show_progress_bar = (logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG)
self.show_progress_bar = show_progress_bar
self.csv_file = "similarity_evaluation"+("_"+name if name else '')+"_results.csv"
self.csv_headers = ["epoch", "steps", "cosine_pearson", "cosine_spearman", "euclidean_pearson", "euclidean_spearman", "manhattan_pearson", "manhattan_spearman", "dot_pearson", "dot_spearman"]
@classmethod
def from_input_examples(cls, examples: List[InputExample], **kwargs):
sentences1 = []
sentences2 = []
scores = []
for example in examples:
sentences1.append(example.texts[0])
sentences2.append(example.texts[1])
scores.append(example.label)
return cls(sentences1, sentences2, scores, **kwargs)
def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float:
if epoch != -1:
if steps == -1:
out_txt = " after epoch {}:".format(epoch)
else:
out_txt = " in epoch {} after {} steps:".format(epoch, steps)
else:
out_txt = ":"
logger.info("EmbeddingSimilarityEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt)
embeddings1 = model.encode(self.sentences1, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_numpy=True)
embeddings2 = model.encode(self.sentences2, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_numpy=True)
labels = self.scores
cosine_scores = 1 - (paired_cosine_distances(embeddings1, embeddings2))
manhattan_distances = -paired_manhattan_distances(embeddings1, embeddings2)
euclidean_distances = -paired_euclidean_distances(embeddings1, embeddings2)
dot_products = [np.dot(emb1, emb2) for emb1, emb2 in zip(embeddings1, embeddings2)]
eval_pearson_cosine, _ = pearsonr(labels, cosine_scores)
eval_spearman_cosine, _ = spearmanr(labels, cosine_scores)
eval_pearson_manhattan, _ = pearsonr(labels, manhattan_distances)
eval_spearman_manhattan, _ = spearmanr(labels, manhattan_distances)
eval_pearson_euclidean, _ = pearsonr(labels, euclidean_distances)
eval_spearman_euclidean, _ = spearmanr(labels, euclidean_distances)
eval_pearson_dot, _ = pearsonr(labels, dot_products)
eval_spearman_dot, _ = spearmanr(labels, dot_products)
logger.info("Cosine-Similarity :\tPearson: {:.4f}\tSpearman: {:.4f}".format(
eval_pearson_cosine, eval_spearman_cosine))
logger.info("Manhattan-Distance:\tPearson: {:.4f}\tSpearman: {:.4f}".format(
eval_pearson_manhattan, eval_spearman_manhattan))
logger.info("Euclidean-Distance:\tPearson: {:.4f}\tSpearman: {:.4f}".format(
eval_pearson_euclidean, eval_spearman_euclidean))
logger.info("Dot-Product-Similarity:\tPearson: {:.4f}\tSpearman: {:.4f}".format(
eval_pearson_dot, eval_spearman_dot))
if output_path is not None and self.write_csv:
csv_path = os.path.join(output_path, self.csv_file)
output_file_exists = os.path.isfile(csv_path)
with open(csv_path, newline='', mode="a" if output_file_exists else 'w', encoding="utf-8") as f:
writer = csv.writer(f)
if not output_file_exists:
writer.writerow(self.csv_headers)
writer.writerow([epoch, steps, eval_pearson_cosine, eval_spearman_cosine, eval_pearson_euclidean,
eval_spearman_euclidean, eval_pearson_manhattan, eval_spearman_manhattan, eval_pearson_dot, eval_spearman_dot])
if self.main_similarity == SimilarityFunction.COSINE:
return eval_spearman_cosine
elif self.main_similarity == SimilarityFunction.EUCLIDEAN:
return eval_spearman_euclidean
elif self.main_similarity == SimilarityFunction.MANHATTAN:
return eval_spearman_manhattan
elif self.main_similarity == SimilarityFunction.DOT_PRODUCT:
return eval_spearman_dot
elif self.main_similarity is None:
return max(eval_spearman_cosine, eval_spearman_manhattan, eval_spearman_euclidean, eval_spearman_dot)
else:
raise ValueError("Unknown main_similarity value")