|
""" |
|
This script trains sentence transformers with a triplet loss function. |
|
|
|
As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. |
|
""" |
|
|
|
from sentence_transformers import SentenceTransformer, InputExample, LoggingHandler, losses, models, util |
|
from torch.utils.data import DataLoader |
|
from sentence_transformers.evaluation import TripletEvaluator |
|
from datetime import datetime |
|
from zipfile import ZipFile |
|
|
|
import csv |
|
import logging |
|
import os |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
model_name = 'distilbert-base-uncased' |
|
|
|
dataset_path = 'datasets/wikipedia-sections' |
|
if not os.path.exists(dataset_path): |
|
os.makedirs(dataset_path, exist_ok=True) |
|
filepath = os.path.join(dataset_path, 'wikipedia-sections-triplets.zip') |
|
util.http_get('https://sbert.net/datasets/wikipedia-sections-triplets.zip', filepath) |
|
with ZipFile(filepath, 'r') as zip: |
|
zip.extractall(dataset_path) |
|
|
|
|
|
|
|
train_batch_size = 16 |
|
output_path = "output/training-wikipedia-sections-"+model_name+"-"+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
num_epochs = 1 |
|
|
|
|
|
|
|
|
|
word_embedding_model = models.Transformer(model_name) |
|
|
|
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
|
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
logger.info("Read Triplet train dataset") |
|
train_examples = [] |
|
with open(os.path.join(dataset_path, 'train.csv'), encoding="utf-8") as fIn: |
|
reader = csv.DictReader(fIn, delimiter=',', quoting=csv.QUOTE_MINIMAL) |
|
for row in reader: |
|
train_examples.append(InputExample(texts=[row['Sentence1'], row['Sentence2'], row['Sentence3']], label=0)) |
|
|
|
|
|
|
|
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size) |
|
train_loss = losses.TripletLoss(model=model) |
|
|
|
logger.info("Read Wikipedia Triplet dev dataset") |
|
dev_examples = [] |
|
with open(os.path.join(dataset_path, 'validation.csv'), encoding="utf-8") as fIn: |
|
reader = csv.DictReader(fIn, delimiter=',', quoting=csv.QUOTE_MINIMAL) |
|
for row in reader: |
|
dev_examples.append(InputExample(texts=[row['Sentence1'], row['Sentence2'], row['Sentence3']])) |
|
|
|
if len(dev_examples) >= 1000: |
|
break |
|
|
|
evaluator = TripletEvaluator.from_input_examples(dev_examples, name='dev') |
|
|
|
|
|
warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) |
|
|
|
|
|
|
|
model.fit(train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=output_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("Read test examples") |
|
test_examples = [] |
|
with open(os.path.join(dataset_path, 'test.csv'), encoding="utf-8") as fIn: |
|
reader = csv.DictReader(fIn, delimiter=',', quoting=csv.QUOTE_MINIMAL) |
|
for row in reader: |
|
test_examples.append(InputExample(texts=[row['Sentence1'], row['Sentence2'], row['Sentence3']])) |
|
|
|
|
|
model = SentenceTransformer(output_path) |
|
test_evaluator = TripletEvaluator.from_input_examples(test_examples, name='test') |
|
test_evaluator(model, output_path=output_path) |
|
|
|
|