|
""" |
|
This is an example how to train SentenceTransformers in a multi-task setup. |
|
|
|
The system trains BERT on the AllNLI and on the STSbenchmark dataset. |
|
""" |
|
from torch.utils.data import DataLoader |
|
import math |
|
from sentence_transformers import models, losses |
|
from sentence_transformers import LoggingHandler, SentenceTransformer, util |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
|
from sentence_transformers.readers import * |
|
import logging |
|
from datetime import datetime |
|
import gzip |
|
import csv |
|
import os |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
model_name = 'bert-base-uncased' |
|
batch_size = 16 |
|
model_save_path = 'output/training_multi-task_'+model_name+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
|
|
|
|
|
nli_dataset_path = 'datasets/AllNLI.tsv.gz' |
|
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' |
|
|
|
if not os.path.exists(nli_dataset_path): |
|
util.http_get('https://sbert.net/datasets/AllNLI.tsv.gz', nli_dataset_path) |
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
|
|
|
|
|
|
word_embedding_model = models.Transformer(model_name) |
|
|
|
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
|
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
|
|
logging.info("Read AllNLI train dataset") |
|
label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} |
|
train_nli_samples = [] |
|
with gzip.open(nli_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if row['split'] == 'train': |
|
label_id = label2int[row['label']] |
|
train_nli_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=label_id)) |
|
|
|
|
|
train_dataloader_nli = DataLoader(train_nli_samples, shuffle=True, batch_size=batch_size) |
|
train_loss_nli = losses.SoftmaxLoss(model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int)) |
|
|
|
logging.info("Read STSbenchmark train dataset") |
|
train_sts_samples = [] |
|
dev_sts_samples = [] |
|
test_sts_samples = [] |
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
score = float(row['score']) / 5.0 |
|
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) |
|
|
|
if row['split'] == 'dev': |
|
dev_sts_samples.append(inp_example) |
|
elif row['split'] == 'test': |
|
test_sts_samples.append(inp_example) |
|
else: |
|
train_sts_samples.append(inp_example) |
|
|
|
|
|
train_dataloader_sts = DataLoader(train_sts_samples, shuffle=True, batch_size=batch_size) |
|
train_loss_sts = losses.CosineSimilarityLoss(model=model) |
|
|
|
|
|
logging.info("Read STSbenchmark dev dataset") |
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_sts_samples, name='sts-dev') |
|
|
|
|
|
num_epochs = 4 |
|
|
|
warmup_steps = math.ceil(len(train_dataloader_sts) * num_epochs * 0.1) |
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
|
|
|
|
|
|
|
|
train_objectives = [(train_dataloader_nli, train_loss_nli), (train_dataloader_sts, train_loss_sts)] |
|
|
|
|
|
model.fit(train_objectives=train_objectives, |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=model_save_path |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = SentenceTransformer(model_save_path) |
|
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_sts_samples, name='sts-test') |
|
test_evaluator(model, output_path=model_save_path) |
|
|