|
""" |
|
A quantized model executes some or all of the operations with integers rather than floating point values. This allows for a more compact models and the use of high performance vectorized operations on many hardware platforms. |
|
|
|
As a result, you get about 40% smaller and faster models. The speed-up depends on your CPU and how PyTorch was build and can be anywhere between 10% speed-up and 300% speed-up. |
|
|
|
Note: Quantized models are only available for CPUs. Use a GPU, if available, for optimal performance. |
|
|
|
For more details: |
|
https://pytorch.org/docs/stable/quantization.html |
|
""" |
|
import logging |
|
import os |
|
import torch |
|
from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
|
from torch.nn import Embedding, Linear |
|
from torch.quantization import quantize_dynamic |
|
import gzip |
|
import csv |
|
import time |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
|
|
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' |
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
|
|
torch.set_num_threads(4) |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO) |
|
|
|
|
|
model_name = 'all-distilroberta-v1' |
|
|
|
|
|
|
|
model = SentenceTransformer(model_name, device='cpu') |
|
q_model = quantize_dynamic(model, {Linear, Embedding}) |
|
|
|
|
|
|
|
logging.info("Read STSbenchmark dataset") |
|
test_samples = [] |
|
sentences = [] |
|
|
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
score = float(row['score']) / 5.0 |
|
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) |
|
|
|
sentences.append(row['sentence1']) |
|
sentences.append(row['sentence2']) |
|
|
|
if row['split'] == 'test': |
|
test_samples.append(inp_example) |
|
|
|
sentences = sentences[0:10000] |
|
|
|
logging.info("Evaluating speed of unquantized model") |
|
start_time = time.time() |
|
emb = model.encode(sentences, show_progress_bar=True) |
|
diff_normal = time.time() - start_time |
|
logging.info("Done after {:.2f} sec. {:.2f} sentences / sec".format(diff_normal, len(sentences) / diff_normal)) |
|
|
|
logging.info("Evaluating speed of quantized model") |
|
start_time = time.time() |
|
emb = q_model.encode(sentences, show_progress_bar=True) |
|
diff_quantized = time.time() - start_time |
|
logging.info("Done after {:.2f} sec. {:.2f} sentences / sec".format(diff_quantized, len(sentences) / diff_quantized)) |
|
logging.info("Speed-up: {:.2f}".format(diff_normal / diff_quantized)) |
|
|
|
|
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') |
|
|
|
logging.info("Evaluate regular model") |
|
model.evaluate(evaluator) |
|
|
|
print("\n\n") |
|
logging.info("Evaluate quantized model") |
|
q_model.evaluate(evaluator) |
|
|
|
|
|
|
|
|
|
|
|
|