|
""" |
|
This file contains an example how to make a SentenceTransformer model faster and lighter. |
|
|
|
This is achieved by using Knowledge Distillation: We use a well working teacher model to train |
|
a fast and light student model. The student model learns to imitate the produced |
|
sentence embeddings from the teacher. We train this on a diverse set of sentences we got |
|
from SNLI + Multi+NLI + Wikipedia. |
|
|
|
After the distillation is finished, the student model produce nearly the same embeddings as the |
|
teacher, however, it will be much faster. |
|
|
|
The script implements to options two options to initialize the student: |
|
Option 1: Train a light transformer model like TinyBERT to imitate the teacher |
|
Option 2: We take the teacher model and keep only certain layers, for example, only 4 layers. |
|
|
|
Option 2) works usually better, as we keep most of the weights from the teacher. In Option 1, we have to tune all |
|
weights in the student from scratch. |
|
|
|
There is a performance - speed trade-off. However, we found that a student with 4 instead of 12 layers keeps about 99.4% |
|
of the teacher performance, while being 2.3 times faster. |
|
""" |
|
from torch.utils.data import DataLoader |
|
from sentence_transformers import models, losses, evaluation |
|
from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample |
|
from sentence_transformers.datasets import ParallelSentencesDataset |
|
import logging |
|
from datetime import datetime |
|
import os |
|
import gzip |
|
import csv |
|
import random |
|
from sklearn.decomposition import PCA |
|
import torch |
|
|
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
|
|
teacher_model_name = 'stsb-roberta-base-v2' |
|
teacher_model = SentenceTransformer(teacher_model_name) |
|
|
|
output_path = "output/model-distillation-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
|
|
|
use_layer_reduction = True |
|
|
|
|
|
if use_layer_reduction: |
|
|
|
student_model = SentenceTransformer(teacher_model_name) |
|
|
|
|
|
auto_model = student_model._first_module().auto_model |
|
|
|
|
|
|
|
|
|
|
|
layers_to_keep = [1, 4, 7, 10] |
|
|
|
|
|
|
|
logging.info("Remove layers from student. Only keep these layers: {}".format(layers_to_keep)) |
|
new_layers = torch.nn.ModuleList([layer_module for i, layer_module in enumerate(auto_model.encoder.layer) if i in layers_to_keep]) |
|
auto_model.encoder.layer = new_layers |
|
auto_model.config.num_hidden_layers = len(layers_to_keep) |
|
else: |
|
|
|
|
|
word_embedding_model = models.Transformer('nreimers/TinyBERT_L-4_H-312_v2') |
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) |
|
student_model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
|
|
inference_batch_size = 64 |
|
train_batch_size = 64 |
|
|
|
|
|
|
|
|
|
nli_dataset_path = 'datasets/AllNLI.tsv.gz' |
|
|
|
|
|
wikipedia_dataset_path = 'datasets/wikipedia-en-sentences.txt.gz' |
|
|
|
|
|
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' |
|
|
|
|
|
|
|
if not os.path.exists(nli_dataset_path): |
|
util.http_get('https://sbert.net/datasets/AllNLI.tsv.gz', nli_dataset_path) |
|
|
|
if not os.path.exists(wikipedia_dataset_path): |
|
util.http_get('https://sbert.net/datasets/wikipedia-en-sentences.txt.gz', wikipedia_dataset_path) |
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
|
|
train_sentences_nli = set() |
|
dev_sentences_nli = set() |
|
|
|
train_sentences_wikipedia = [] |
|
dev_sentences_wikipedia = [] |
|
|
|
|
|
with gzip.open(nli_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if row['split'] == 'dev': |
|
dev_sentences_nli.add(row['sentence1']) |
|
dev_sentences_nli.add(row['sentence2']) |
|
else: |
|
train_sentences_nli.add(row['sentence1']) |
|
train_sentences_nli.add(row['sentence2']) |
|
|
|
train_sentences_nli = list(train_sentences_nli) |
|
random.shuffle(train_sentences_nli) |
|
|
|
dev_sentences_nli = list(dev_sentences_nli) |
|
random.shuffle(dev_sentences_nli) |
|
dev_sentences_nli = dev_sentences_nli[0:5000] |
|
|
|
|
|
with gzip.open(wikipedia_dataset_path, 'rt', encoding='utf8') as fIn: |
|
wikipeda_sentences = [line.strip() for line in fIn] |
|
|
|
dev_sentences_wikipedia = wikipeda_sentences[0:5000] |
|
train_sentences_wikipedia = wikipeda_sentences[5000:] |
|
|
|
|
|
|
|
logging.info("Read STSbenchmark dev dataset") |
|
dev_samples = [] |
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if row['split'] == 'dev': |
|
score = float(row['score']) / 5.0 |
|
dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
|
|
dev_evaluator_sts = evaluation.EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') |
|
|
|
|
|
logging.info("Teacher Performance:") |
|
dev_evaluator_sts(teacher_model) |
|
|
|
|
|
if student_model.get_sentence_embedding_dimension() < teacher_model.get_sentence_embedding_dimension(): |
|
logging.info("Student model has fewer dimensions than the teacher. Compute PCA for down projection") |
|
pca_sentences = train_sentences_nli[0:20000] + train_sentences_wikipedia[0:20000] |
|
pca_embeddings = teacher_model.encode(pca_sentences, convert_to_numpy=True) |
|
pca = PCA(n_components=student_model.get_sentence_embedding_dimension()) |
|
pca.fit(pca_embeddings) |
|
|
|
|
|
dense = models.Dense(in_features=teacher_model.get_sentence_embedding_dimension(), out_features=student_model.get_sentence_embedding_dimension(), bias=False, activation_function=torch.nn.Identity()) |
|
dense.linear.weight = torch.nn.Parameter(torch.tensor(pca.components_)) |
|
teacher_model.add_module('dense', dense) |
|
|
|
logging.info("Teacher Performance with {} dimensions:".format(teacher_model.get_sentence_embedding_dimension())) |
|
dev_evaluator_sts(teacher_model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
train_data = ParallelSentencesDataset(student_model=student_model, teacher_model=teacher_model, batch_size=inference_batch_size, use_embedding_cache=False) |
|
train_data.add_dataset([[sent] for sent in train_sentences_nli], max_sentence_length=256) |
|
train_data.add_dataset([[sent] for sent in train_sentences_wikipedia], max_sentence_length=256) |
|
|
|
train_dataloader = DataLoader(train_data, shuffle=True, batch_size=train_batch_size) |
|
train_loss = losses.MSELoss(model=student_model) |
|
|
|
|
|
dev_sentences = dev_sentences_nli + dev_sentences_wikipedia |
|
dev_evaluator_mse = evaluation.MSEEvaluator(dev_sentences, dev_sentences, teacher_model=teacher_model) |
|
|
|
|
|
student_model.fit(train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=evaluation.SequentialEvaluator([dev_evaluator_sts, dev_evaluator_mse]), |
|
epochs=1, |
|
warmup_steps=1000, |
|
evaluation_steps=5000, |
|
output_path=output_path, |
|
save_best_model=True, |
|
optimizer_params={'lr': 1e-4, 'eps': 1e-6, 'correct_bias': False}, |
|
use_amp=True) |
|
|
|
|