SentenceTransformer / examples /training /data_augmentation /train_sts_indomain_semantic.py
lengocduc195's picture
pushNe
2359bda
"""
The script shows how to train Augmented SBERT (In-Domain) strategy for STSb dataset with Semantic Search Sampling.
Methodology:
Three steps are followed for AugSBERT data-augmentation strategy with Semantic Search -
1. Fine-tune cross-encoder (BERT) on gold STSb dataset
2. Fine-tuned Cross-encoder is used to label on Sem. Search sampled unlabeled pairs (silver STSb dataset)
3. Bi-encoder (SBERT) is finally fine-tuned on both gold + silver STSb dataset
Citation: https://arxiv.org/abs/2010.08240
Usage:
python train_sts_indomain_semantic.py
OR
python train_sts_indomain_semantic.py pretrained_transformer_model_name top_k
python train_sts_indomain_semantic.py bert-base-uncased 3
"""
from torch.utils.data import DataLoader
from sentence_transformers import models, losses, util
from sentence_transformers import LoggingHandler, SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import InputExample
from datetime import datetime
import logging
import csv
import torch
import tqdm
import sys
import math
import gzip
import os
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
#You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base
model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased'
top_k = int(sys.argv[2]) if len(sys.argv) > 2 else 3
batch_size = 16
num_epochs = 1
max_seq_length = 128
###### Read Datasets ######
#Check if dataset exsist. If not, download and extract it
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz'
if not os.path.exists(sts_dataset_path):
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)
cross_encoder_path = 'output/cross-encoder/stsb_indomain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
bi_encoder_path = 'output/bi-encoder/stsb_augsbert_SS_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
###### Cross-encoder (simpletransformers) ######
logging.info("Loading cross-encoder model: {}".format(model_name))
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for cross-encoder model
cross_encoder = CrossEncoder(model_name, num_labels=1)
###### Bi-encoder (sentence-transformers) ######
logging.info("Loading bi-encoder model: {}".format(model_name))
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length)
# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
bi_encoder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
#####################################################
#
# Step 1: Train cross-encoder model with STSbenchmark
#
#####################################################
logging.info("Step 1: Train cross-encoder: {} with STSbenchmark (gold dataset)".format(model_name))
gold_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
for row in reader:
score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1
if row['split'] == 'dev':
dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
elif row['split'] == 'test':
test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
else:
#As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set
gold_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
gold_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score))
# We wrap gold_samples (which is a List[InputExample]) into a pytorch DataLoader
train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size)
# We add an evaluator, which evaluates the performance during training
evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev')
# Configure the training
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the cross-encoder model
cross_encoder.fit(train_dataloader=train_dataloader,
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=cross_encoder_path)
############################################################################
#
# Step 2: Find silver pairs to label
#
############################################################################
#### Top k similar sentences to be retrieved ####
#### Larger the k, bigger the silver dataset ####
logging.info("Step 2.1: Generate STSbenchmark (silver dataset) using pretrained SBERT \
model and top-{} semantic search combinations".format(top_k))
silver_data = []
sentences = set()
for sample in gold_samples:
sentences.update(sample.texts)
sentences = list(sentences) # unique sentences
sent2idx = {sentence: idx for idx, sentence in enumerate(sentences)} # storing id and sentence in dictionary
duplicates = set((sent2idx[data.texts[0]], sent2idx[data.texts[1]]) for data in gold_samples) # not to include gold pairs of sentences again
# For simplicity we use a pretrained model
semantic_model_name = 'paraphrase-MiniLM-L6-v2'
semantic_search_model = SentenceTransformer(semantic_model_name)
logging.info("Encoding unique sentences with semantic search model: {}".format(semantic_model_name))
# encoding all unique sentences present in the training dataset
embeddings = semantic_search_model.encode(sentences, batch_size=batch_size, convert_to_tensor=True)
logging.info("Retrieve top-{} with semantic search model: {}".format(top_k, semantic_model_name))
# retrieving top-k sentences given a sentence from the dataset
progress = tqdm.tqdm(unit="docs", total=len(sent2idx))
for idx in range(len(sentences)):
sentence_embedding = embeddings[idx]
cos_scores = util.cos_sim(sentence_embedding, embeddings)[0]
cos_scores = cos_scores.cpu()
progress.update(1)
#We use torch.topk to find the highest 5 scores
top_results = torch.topk(cos_scores, k=top_k+1)
for score, iid in zip(top_results[0], top_results[1]):
if iid != idx and (iid, idx) not in duplicates:
silver_data.append((sentences[idx], sentences[iid]))
duplicates.add((idx,iid))
progress.reset()
progress.close()
logging.info("Length of silver_dataset generated: {}".format(len(silver_data)))
logging.info("Step 2.2: Label STSbenchmark (silver dataset) with cross-encoder: {}".format(model_name))
cross_encoder = CrossEncoder(cross_encoder_path)
silver_scores = cross_encoder.predict(silver_data)
# All model predictions should be between [0,1]
assert all(0.0 <= score <= 1.0 for score in silver_scores)
############################################################################################
#
# Step 3: Train bi-encoder model with both STSbenchmark and labeled AllNlI - Augmented SBERT
#
############################################################################################
logging.info("Step 3: Train bi-encoder: {} with STSbenchmark (gold + silver dataset)".format(model_name))
# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark gold and silver train dataset")
silver_samples = list(InputExample(texts=[data[0], data[1]], label=score) for \
data, score in zip(silver_data, silver_scores))
train_dataloader = DataLoader(gold_samples + silver_samples, shuffle=True, batch_size=batch_size)
train_loss = losses.CosineSimilarityLoss(model=bi_encoder)
logging.info("Read STSbenchmark dev dataset")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
# Configure the training.
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the bi-encoder model
bi_encoder.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=bi_encoder_path
)
#################################################################################
#
# Evaluate cross-encoder and Augmented SBERT performance on STS benchmark dataset
#
#################################################################################
# load the stored augmented-sbert model
bi_encoder = SentenceTransformer(bi_encoder_path)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(bi_encoder, output_path=bi_encoder_path)