|
""" |
|
The script shows how to train Augmented SBERT (In-Domain) strategy for STSb dataset with Semantic Search Sampling. |
|
|
|
|
|
Methodology: |
|
Three steps are followed for AugSBERT data-augmentation strategy with Semantic Search - |
|
1. Fine-tune cross-encoder (BERT) on gold STSb dataset |
|
2. Fine-tuned Cross-encoder is used to label on Sem. Search sampled unlabeled pairs (silver STSb dataset) |
|
3. Bi-encoder (SBERT) is finally fine-tuned on both gold + silver STSb dataset |
|
|
|
Citation: https://arxiv.org/abs/2010.08240 |
|
|
|
Usage: |
|
python train_sts_indomain_semantic.py |
|
|
|
OR |
|
python train_sts_indomain_semantic.py pretrained_transformer_model_name top_k |
|
|
|
python train_sts_indomain_semantic.py bert-base-uncased 3 |
|
""" |
|
from torch.utils.data import DataLoader |
|
from sentence_transformers import models, losses, util |
|
from sentence_transformers import LoggingHandler, SentenceTransformer |
|
from sentence_transformers.cross_encoder import CrossEncoder |
|
from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
|
from sentence_transformers.readers import InputExample |
|
from datetime import datetime |
|
import logging |
|
import csv |
|
import torch |
|
import tqdm |
|
import sys |
|
import math |
|
import gzip |
|
import os |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
|
|
model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased' |
|
top_k = int(sys.argv[2]) if len(sys.argv) > 2 else 3 |
|
|
|
batch_size = 16 |
|
num_epochs = 1 |
|
max_seq_length = 128 |
|
|
|
|
|
|
|
|
|
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' |
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
cross_encoder_path = 'output/cross-encoder/stsb_indomain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
bi_encoder_path = 'output/bi-encoder/stsb_augsbert_SS_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
|
|
|
logging.info("Loading cross-encoder model: {}".format(model_name)) |
|
|
|
cross_encoder = CrossEncoder(model_name, num_labels=1) |
|
|
|
|
|
|
|
logging.info("Loading bi-encoder model: {}".format(model_name)) |
|
|
|
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) |
|
|
|
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
|
|
bi_encoder = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("Step 1: Train cross-encoder: {} with STSbenchmark (gold dataset)".format(model_name)) |
|
|
|
gold_samples = [] |
|
dev_samples = [] |
|
test_samples = [] |
|
|
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
score = float(row['score']) / 5.0 |
|
|
|
if row['split'] == 'dev': |
|
dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
elif row['split'] == 'test': |
|
test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
else: |
|
|
|
gold_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) |
|
gold_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score)) |
|
|
|
|
|
|
|
train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size) |
|
|
|
|
|
|
|
evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev') |
|
|
|
|
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) |
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
|
|
cross_encoder.fit(train_dataloader=train_dataloader, |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=cross_encoder_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("Step 2.1: Generate STSbenchmark (silver dataset) using pretrained SBERT \ |
|
model and top-{} semantic search combinations".format(top_k)) |
|
|
|
silver_data = [] |
|
sentences = set() |
|
|
|
for sample in gold_samples: |
|
sentences.update(sample.texts) |
|
|
|
sentences = list(sentences) |
|
sent2idx = {sentence: idx for idx, sentence in enumerate(sentences)} |
|
duplicates = set((sent2idx[data.texts[0]], sent2idx[data.texts[1]]) for data in gold_samples) |
|
|
|
|
|
|
|
semantic_model_name = 'paraphrase-MiniLM-L6-v2' |
|
semantic_search_model = SentenceTransformer(semantic_model_name) |
|
logging.info("Encoding unique sentences with semantic search model: {}".format(semantic_model_name)) |
|
|
|
|
|
embeddings = semantic_search_model.encode(sentences, batch_size=batch_size, convert_to_tensor=True) |
|
|
|
logging.info("Retrieve top-{} with semantic search model: {}".format(top_k, semantic_model_name)) |
|
|
|
|
|
progress = tqdm.tqdm(unit="docs", total=len(sent2idx)) |
|
for idx in range(len(sentences)): |
|
sentence_embedding = embeddings[idx] |
|
cos_scores = util.cos_sim(sentence_embedding, embeddings)[0] |
|
cos_scores = cos_scores.cpu() |
|
progress.update(1) |
|
|
|
|
|
top_results = torch.topk(cos_scores, k=top_k+1) |
|
|
|
for score, iid in zip(top_results[0], top_results[1]): |
|
if iid != idx and (iid, idx) not in duplicates: |
|
silver_data.append((sentences[idx], sentences[iid])) |
|
duplicates.add((idx,iid)) |
|
|
|
progress.reset() |
|
progress.close() |
|
|
|
logging.info("Length of silver_dataset generated: {}".format(len(silver_data))) |
|
logging.info("Step 2.2: Label STSbenchmark (silver dataset) with cross-encoder: {}".format(model_name)) |
|
cross_encoder = CrossEncoder(cross_encoder_path) |
|
silver_scores = cross_encoder.predict(silver_data) |
|
|
|
|
|
assert all(0.0 <= score <= 1.0 for score in silver_scores) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("Step 3: Train bi-encoder: {} with STSbenchmark (gold + silver dataset)".format(model_name)) |
|
|
|
|
|
logging.info("Read STSbenchmark gold and silver train dataset") |
|
silver_samples = list(InputExample(texts=[data[0], data[1]], label=score) for \ |
|
data, score in zip(silver_data, silver_scores)) |
|
|
|
|
|
train_dataloader = DataLoader(gold_samples + silver_samples, shuffle=True, batch_size=batch_size) |
|
train_loss = losses.CosineSimilarityLoss(model=bi_encoder) |
|
|
|
logging.info("Read STSbenchmark dev dataset") |
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') |
|
|
|
|
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) |
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
|
|
bi_encoder.fit(train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=bi_encoder_path |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bi_encoder = SentenceTransformer(bi_encoder_path) |
|
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') |
|
test_evaluator(bi_encoder, output_path=bi_encoder_path) |