|
""" |
|
The script shows how to train Augmented SBERT (In-Domain) strategy for STSb dataset with nlp textual augmentation. |
|
We utilise nlpaug (https://github.com/makcedward/nlpaug) for data augmentation strategies over a single sentence. |
|
|
|
We chose synonym replacement for our example with (can be extended to other techniques) - |
|
1. Word-embeddings (word2vec) |
|
2. WordNet |
|
3. Contextual word-embeddings (BERT) |
|
|
|
Methodology: |
|
Take a gold STSb pair, like (A, B, 0.6) Then replace synonyms in A and B, which gives you (A', B', 0.6) |
|
These are the silver data and SBERT is finally trained on (gold + silver) STSb data. |
|
|
|
Additional requirements: |
|
pip install nlpaug |
|
|
|
Information: |
|
We went over the nlpaug package and found from our experience, the commonly used and effective technique |
|
is synonym replacement with words. However feel free to use any textual data augmentation mentioned |
|
in the example - (https://github.com/makcedward/nlpaug/blob/master/example/textual_augmenter.ipynb) |
|
|
|
You could also extend the easy data augmentation methods for other languages too, a good example can be |
|
found here - (https://github.com/makcedward/nlpaug/blob/master/example/textual_language_augmenter.ipynb) |
|
|
|
|
|
Citation: https://arxiv.org/abs/2010.08240 |
|
|
|
Usage: |
|
python train_sts_indomain_nlpaug.py |
|
""" |
|
from torch.utils.data import DataLoader |
|
import torch |
|
import math |
|
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
|
from sentence_transformers.readers import STSBenchmarkDataReader, InputExample |
|
import nlpaug.augmenter.word as naw |
|
import logging |
|
from datetime import datetime |
|
import sys |
|
import os |
|
import gzip |
|
import csv |
|
import tqdm |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased' |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
batch_size = 16 |
|
num_epochs = 1 |
|
|
|
|
|
|
|
|
|
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' |
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
|
|
model_save_path = 'output/bi-encoder/stsb_indomain_eda_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
|
|
|
logging.info("Loading SBERT model: {}".format(model_name)) |
|
|
|
word_embedding_model = models.Transformer(model_name) |
|
|
|
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
|
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
gold_samples = [] |
|
dev_samples = [] |
|
test_samples = [] |
|
|
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
score = float(row['score']) / 5.0 |
|
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) |
|
|
|
if row['split'] == 'dev': |
|
dev_samples.append(inp_example) |
|
elif row['split'] == 'test': |
|
test_samples.append(inp_example) |
|
else: |
|
gold_samples.append(inp_example) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("Starting with synonym replacement...") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aug = naw.ContextualWordEmbsAug( |
|
model_path=model_name, action="insert", device=device) |
|
|
|
silver_samples = [] |
|
progress = tqdm.tqdm(unit="docs", total=len(gold_samples)) |
|
|
|
for sample in gold_samples: |
|
augmented_texts = aug.augment(sample.texts) |
|
inp_example = InputExample(texts=augmented_texts, label=sample.label) |
|
silver_samples.append(inp_example) |
|
progress.update(1) |
|
|
|
progress.reset() |
|
progress.close() |
|
logging.info("Textual augmentation completed....") |
|
logging.info("Number of silver pairs generated: {}".format(len(silver_samples))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("Read STSbenchmark (gold + silver) training dataset") |
|
train_dataloader = DataLoader(gold_samples + silver_samples, shuffle=True, batch_size=batch_size) |
|
train_loss = losses.CosineSimilarityLoss(model=model) |
|
|
|
|
|
logging.info("Read STSbenchmark dev dataset") |
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') |
|
|
|
|
|
|
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) |
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
|
|
|
|
model.fit(train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=model_save_path |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = SentenceTransformer(model_save_path) |
|
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') |
|
test_evaluator(model, output_path=model_save_path) |