lengocduc195's picture
pushNe
2359bda
"""
The script shows how to train Augmented SBERT (In-Domain) strategy for STSb dataset with BM25 sampling.
We utlise easy and practical elasticsearch (https://www.elastic.co/) for BM25 sampling.
Installations:
For this example, elasticsearch to be installed (pip install elasticsearch)
[NOTE] You need to also install ElasticSearch locally on your PC or desktop.
link for download - https://www.elastic.co/downloads/elasticsearch
Or to run it with Docker: https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html
Methodology:
Three steps are followed for AugSBERT data-augmentation with BM25 Sampling -
1. Fine-tune cross-encoder (BERT) on gold STSb dataset
2. Fine-tuned Cross-encoder is used to label on BM25 sampled unlabeled pairs (silver STSb dataset)
3. Bi-encoder (SBERT) is finally fine-tuned on both gold + silver STSb dataset
Citation: https://arxiv.org/abs/2010.08240
Usage:
python train_sts_indomain_bm25.py
OR
python train_sts_indomain_bm25.py pretrained_transformer_model_name top_k
python train_sts_indomain_bm25.py bert-base-uncased 3
"""
from torch.utils.data import DataLoader
from sentence_transformers import models, losses, util
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator
from sentence_transformers import LoggingHandler, SentenceTransformer
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import InputExample
from elasticsearch import Elasticsearch
from datetime import datetime
import logging
import csv
import sys
import tqdm
import math
import gzip
import os
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
# supressing INFO messages for elastic-search logger
tracer = logging.getLogger('elasticsearch')
tracer.setLevel(logging.CRITICAL)
es = Elasticsearch()
#You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base
model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased'
top_k = int(sys.argv[2]) if len(sys.argv) > 2 else 3
batch_size = 16
num_epochs = 1
max_seq_length = 128
###### Read Datasets ######
#Check if dataset exsist. If not, download and extract it
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz'
if not os.path.exists(sts_dataset_path):
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)
cross_encoder_path = 'output/cross-encoder/stsb_indomain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
bi_encoder_path = 'output/bi-encoder/stsb_augsbert_BM25_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
###### Cross-encoder (simpletransformers) ######
logging.info("Loading sentence-transformers model: {}".format(model_name))
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for cross-encoder model
cross_encoder = CrossEncoder(model_name, num_labels=1)
###### Bi-encoder (sentence-transformers) ######
logging.info("Loading bi-encoder model: {}".format(model_name))
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length)
# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
bi_encoder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
#####################################################################
#
# Step 1: Train cross-encoder model with (gold) STS benchmark dataset
#
#####################################################################
logging.info("Step 1: Train cross-encoder: ({}) with STSbenchmark".format(model_name))
gold_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
for row in reader:
score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1
if row['split'] == 'dev':
dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
elif row['split'] == 'test':
test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
else:
#As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set
gold_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
gold_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score))
# We wrap gold_samples (which is a List[InputExample]) into a pytorch DataLoader
train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size)
# We add an evaluator, which evaluates the performance during training
evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev')
# Configure the training
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the cross-encoder model
cross_encoder.fit(train_dataloader=train_dataloader,
evaluator=evaluator,
epochs=num_epochs,
warmup_steps=warmup_steps,
output_path=cross_encoder_path)
############################################################################
#
# Step 2: Label BM25 sampled STSb (silver dataset) using cross-encoder model
#
############################################################################
#### Top k similar sentences to be retrieved ####
#### Larger the k, bigger the silver dataset ####
index_name = "stsb" # index-name should be in lowercase
logging.info("Step 2.1: Generate STSbenchmark (silver dataset) using top-{} bm25 combinations".format(top_k))
unique_sentences = set()
for sample in gold_samples:
unique_sentences.update(sample.texts)
unique_sentences = list(unique_sentences) # unique sentences
sent2idx = {sentence: idx for idx, sentence in enumerate(unique_sentences)} # storing id and sentence in dictionary
duplicates = set((sent2idx[data.texts[0]], sent2idx[data.texts[1]]) for data in gold_samples) # not to include gold pairs of sentences again
# Ignore 400 cause by IndexAlreadyExistsException when creating an index
logging.info("Creating elastic-search index - {}".format(index_name))
es.indices.create(index=index_name, ignore=[400])
# indexing all sentences
logging.info("Starting to index....")
for sent in unique_sentences:
response = es.index(
index = index_name,
id = sent2idx[sent],
body = {"sent" : sent})
logging.info("Indexing complete for {} unique sentences".format(len(unique_sentences)))
silver_data = []
progress = tqdm.tqdm(unit="docs", total=len(sent2idx))
# retrieval of top-k sentences which forms the silver training data
for sent, idx in sent2idx.items():
res = es.search(index = index_name, body={"query": {"match": {"sent": sent} } }, size = top_k)
progress.update(1)
for hit in res['hits']['hits']:
if idx != int(hit["_id"]) and (idx, int(hit["_id"])) not in set(duplicates):
silver_data.append((sent, hit['_source']["sent"]))
duplicates.add((idx, int(hit["_id"])))
progress.reset()
progress.close()
logging.info("Number of silver pairs generated for STSbenchmark: {}".format(len(silver_data)))
logging.info("Step 2.2: Label STSbenchmark (silver dataset) with cross-encoder: {}".format(model_name))
cross_encoder = CrossEncoder(cross_encoder_path)
silver_scores = cross_encoder.predict(silver_data)
# All model predictions should be between [0,1]
assert all(0.0 <= score <= 1.0 for score in silver_scores)
#################################################################################################
#
# Step 3: Train bi-encoder model with both (gold + silver) STSbenchmark dataset - Augmented SBERT
#
#################################################################################################
logging.info("Step 3: Train bi-encoder: {} with STSbenchmark (gold + silver dataset)".format(model_name))
# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark gold and silver train dataset")
silver_samples = list(InputExample(texts=[data[0], data[1]], label=score) for \
data, score in zip(silver_data, silver_scores))
train_dataloader = DataLoader(gold_samples + silver_samples, shuffle=True, batch_size=batch_size)
train_loss = losses.CosineSimilarityLoss(model=bi_encoder)
logging.info("Read STSbenchmark dev dataset")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
# Configure the training.
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the bi-encoder model
bi_encoder.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=bi_encoder_path
)
######################################################################
#
# Evaluate Augmented SBERT performance on STS benchmark (test) dataset
#
######################################################################
# load the stored augmented-sbert model
bi_encoder = SentenceTransformer(bi_encoder_path)
logging.info("Read STSbenchmark test dataset")
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(bi_encoder, output_path=bi_encoder_path)