File size: 3,010 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from sentence_transformers.evaluation import SentenceEvaluator
import numpy as np
import logging
import os
import csv
from typing import List


logger = logging.getLogger(__name__)

class MSEEvaluator(SentenceEvaluator):
    """
    Computes the mean squared error (x100) between the computed sentence embedding
    and some target sentence embedding.

    The MSE is computed between ||teacher.encode(source_sentences) - student.encode(target_sentences)||.

    For multilingual knowledge distillation (https://arxiv.org/abs/2004.09813), source_sentences are in English
    and target_sentences are in a different language like German, Chinese, Spanish...

    :param source_sentences: Source sentences are embedded with the teacher model
    :param target_sentences: Target sentences are ambedding with the student model.
    :param show_progress_bar: Show progress bar when computing embeddings
    :param batch_size: Batch size to compute sentence embeddings
    :param name: Name of the evaluator
    :param write_csv: Write results to CSV file
    """
    def __init__(self, source_sentences: List[str], target_sentences: List[str], teacher_model = None, show_progress_bar: bool = False, batch_size: int = 32, name: str = '', write_csv: bool = True):
        self.source_embeddings = teacher_model.encode(source_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, convert_to_numpy=True)

        self.target_sentences = target_sentences
        self.show_progress_bar = show_progress_bar
        self.batch_size = batch_size
        self.name = name

        self.csv_file = "mse_evaluation_" + name + "_results.csv"
        self.csv_headers = ["epoch", "steps", "MSE"]
        self.write_csv = write_csv

    def __call__(self, model, output_path, epoch  = -1, steps = -1):
        if epoch != -1:
            if steps == -1:
                out_txt = " after epoch {}:".format(epoch)
            else:
                out_txt = " in epoch {} after {} steps:".format(epoch, steps)
        else:
            out_txt = ":"

        target_embeddings = model.encode(self.target_sentences, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, convert_to_numpy=True)

        mse = ((self.source_embeddings - target_embeddings)**2).mean()
        mse *= 100

        logger.info("MSE evaluation (lower = better) on "+self.name+" dataset"+out_txt)
        logger.info("MSE (*100):\t{:4f}".format(mse))

        if output_path is not None and self.write_csv:
            csv_path = os.path.join(output_path, self.csv_file)
            output_file_exists = os.path.isfile(csv_path)
            with open(csv_path, newline='', mode="a" if output_file_exists else 'w', encoding="utf-8") as f:
                writer = csv.writer(f)
                if not output_file_exists:
                    writer.writerow(self.csv_headers)

                writer.writerow([epoch, steps, mse])

        return -mse #Return negative score as SentenceTransformers maximizes the performance