File size: 9,163 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from . import SentenceEvaluator
import logging
import os
import csv
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
from sklearn.metrics import average_precision_score
import numpy as np
from typing import List
from ..readers import InputExample


logger = logging.getLogger(__name__)

class BinaryClassificationEvaluator(SentenceEvaluator):
    """
    Evaluate a model based on the similarity of the embeddings by calculating the accuracy of identifying similar and
    dissimilar sentences.
    The metrics are the cosine similarity as well as euclidean and Manhattan distance
    The returned score is the accuracy with a specified metric.

    The results are written in a CSV. If a CSV already exists, then values are appended.

    The labels need to be 0 for dissimilar pairs and 1 for similar pairs.

    :param sentences1: The first column of sentences
    :param sentences2: The second column of sentences
    :param labels: labels[i] is the label for the pair (sentences1[i], sentences2[i]). Must be 0 or 1
    :param name: Name for the output
    :param batch_size: Batch size used to compute embeddings
    :param show_progress_bar: If true, prints a progress bar
    :param write_csv: Write results to a CSV file
    """

    def __init__(self, sentences1: List[str], sentences2: List[str], labels: List[int], name: str = '', batch_size: int = 32, show_progress_bar: bool = False, write_csv: bool = True):
        self.sentences1 = sentences1
        self.sentences2 = sentences2
        self.labels = labels

        assert len(self.sentences1) == len(self.sentences2)
        assert len(self.sentences1) == len(self.labels)
        for label in labels:
            assert (label == 0 or label == 1)

        self.write_csv = write_csv
        self.name = name
        self.batch_size = batch_size
        if show_progress_bar is None:
            show_progress_bar = (logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG)
        self.show_progress_bar = show_progress_bar

        self.csv_file = "binary_classification_evaluation" + ("_"+name if name else '') + "_results.csv"
        self.csv_headers = ["epoch", "steps",
                            "cossim_accuracy", "cossim_accuracy_threshold", "cossim_f1", "cossim_precision", "cossim_recall", "cossim_f1_threshold", "cossim_ap",
                            "manhattan_accuracy", "manhattan_accuracy_threshold", "manhattan_f1", "manhattan_precision", "manhattan_recall", "manhattan_f1_threshold", "manhattan_ap",
                            "euclidean_accuracy", "euclidean_accuracy_threshold", "euclidean_f1", "euclidean_precision", "euclidean_recall", "euclidean_f1_threshold", "euclidean_ap",
                            "dot_accuracy", "dot_accuracy_threshold", "dot_f1", "dot_precision", "dot_recall", "dot_f1_threshold", "dot_ap"]


    @classmethod
    def from_input_examples(cls, examples: List[InputExample], **kwargs):
        sentences1 = []
        sentences2 = []
        scores = []

        for example in examples:
            sentences1.append(example.texts[0])
            sentences2.append(example.texts[1])
            scores.append(example.label)
        return cls(sentences1, sentences2, scores, **kwargs)

    def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float:

        if epoch != -1:
            if steps == -1:
                out_txt = f" after epoch {epoch}:"
            else:
                out_txt = f" in epoch {epoch} after {steps} steps:"
        else:
            out_txt = ":"

        logger.info("Binary Accuracy Evaluation of the model on " + self.name + " dataset" + out_txt)

        scores = self.compute_metrices(model)


        #Main score is the max of Average Precision (AP)
        main_score = max(scores[short_name]['ap'] for short_name in scores)

        file_output_data = [epoch, steps]

        for header_name in self.csv_headers:
            if '_' in header_name:
                sim_fct, metric = header_name.split("_", maxsplit=1)
                file_output_data.append(scores[sim_fct][metric])

        if output_path is not None and self.write_csv:
            csv_path = os.path.join(output_path, self.csv_file)
            if not os.path.isfile(csv_path):
                with open(csv_path, newline='', mode="w", encoding="utf-8") as f:
                    writer = csv.writer(f)
                    writer.writerow(self.csv_headers)
                    writer.writerow(file_output_data)
            else:
                with open(csv_path, newline='', mode="a", encoding="utf-8") as f:
                    writer = csv.writer(f)
                    writer.writerow(file_output_data)

        return main_score


    def compute_metrices(self, model):
        sentences = list(set(self.sentences1 + self.sentences2))
        embeddings = model.encode(sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_numpy=True)
        emb_dict = {sent: emb for sent, emb in zip(sentences, embeddings)}
        embeddings1 = [emb_dict[sent] for sent in self.sentences1]
        embeddings2 = [emb_dict[sent] for sent in self.sentences2]

        cosine_scores = 1 - paired_cosine_distances(embeddings1, embeddings2)
        manhattan_distances = paired_manhattan_distances(embeddings1, embeddings2)
        euclidean_distances = paired_euclidean_distances(embeddings1, embeddings2)

        embeddings1_np = np.asarray(embeddings1)
        embeddings2_np = np.asarray(embeddings2)
        dot_scores = [np.dot(embeddings1_np[i], embeddings2_np[i]) for i in range(len(embeddings1_np))]


        labels = np.asarray(self.labels)
        output_scores = {}
        for short_name, name, scores, reverse in [['cossim', 'Cosine-Similarity', cosine_scores, True], ['manhattan', 'Manhattan-Distance', manhattan_distances, False], ['euclidean', 'Euclidean-Distance', euclidean_distances, False], ['dot', 'Dot-Product', dot_scores, True]]:
            acc, acc_threshold = self.find_best_acc_and_threshold(scores, labels, reverse)
            f1, precision, recall, f1_threshold = self.find_best_f1_and_threshold(scores, labels, reverse)
            ap = average_precision_score(labels, scores * (1 if reverse else -1))

            logger.info("Accuracy with {}:           {:.2f}\t(Threshold: {:.4f})".format(name, acc * 100, acc_threshold))
            logger.info("F1 with {}:                 {:.2f}\t(Threshold: {:.4f})".format(name, f1 * 100, f1_threshold))
            logger.info("Precision with {}:          {:.2f}".format(name, precision * 100))
            logger.info("Recall with {}:             {:.2f}".format(name, recall * 100))
            logger.info("Average Precision with {}:  {:.2f}\n".format(name, ap * 100))

            output_scores[short_name] = {
                'accuracy' : acc,
                'accuracy_threshold': acc_threshold,
                'f1': f1,
                'f1_threshold': f1_threshold,
                'precision': precision,
                'recall': recall,
                'ap': ap
            }


        return output_scores



    @staticmethod
    def find_best_acc_and_threshold(scores, labels, high_score_more_similar: bool):
        assert len(scores) == len(labels)
        rows = list(zip(scores, labels))

        rows = sorted(rows, key=lambda x: x[0], reverse=high_score_more_similar)

        max_acc = 0
        best_threshold = -1

        positive_so_far = 0
        remaining_negatives = sum(labels == 0)

        for i in range(len(rows)-1):
            score, label = rows[i]
            if label == 1:
                positive_so_far += 1
            else:
                remaining_negatives -= 1

            acc = (positive_so_far + remaining_negatives) / len(labels)
            if acc > max_acc:
                max_acc = acc
                best_threshold = (rows[i][0] + rows[i+1][0]) / 2

        return max_acc, best_threshold

    @staticmethod
    def find_best_f1_and_threshold(scores, labels, high_score_more_similar: bool):
        assert len(scores) == len(labels)

        scores = np.asarray(scores)
        labels = np.asarray(labels)

        rows = list(zip(scores, labels))

        rows = sorted(rows, key=lambda x: x[0], reverse=high_score_more_similar)

        best_f1 = best_precision = best_recall = 0
        threshold = 0
        nextract = 0
        ncorrect = 0
        total_num_duplicates = sum(labels)

        for i in range(len(rows)-1):
            score, label = rows[i]
            nextract += 1

            if label == 1:
                ncorrect += 1

            if ncorrect > 0:
                precision = ncorrect / nextract
                recall = ncorrect / total_num_duplicates
                f1 = 2 * precision * recall / (precision + recall)
                if f1 > best_f1:
                    best_f1 = f1
                    best_precision = precision
                    best_recall = recall
                    threshold = (rows[i][0] + rows[i + 1][0]) / 2

        return best_f1, best_precision, best_recall, threshold