File size: 3,657 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers import SentenceTransformer, LoggingHandler, models, util, InputExample
from sentence_transformers import losses
import os
import gzip
import csv
from datetime import datetime
import logging
from torch.utils.data import DataLoader

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

## Training parameters
model_name = 'distilbert-base-uncased'
batch_size = 128
epochs = 1
max_seq_length = 75

# Save path to store our model
model_save_path = 'output/training_stsb_ct-improved-{}-{}'.format(model_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))


################# Train sentences #################
# We use 1 Million sentences from Wikipedia to train our model
wikipedia_dataset_path = 'data/wiki1m_for_simcse.txt'
if not os.path.exists(wikipedia_dataset_path):
    util.http_get('https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt', wikipedia_dataset_path)

# train_sentences are simply your list of sentences
train_sentences = []
with open(wikipedia_dataset_path, 'r', encoding='utf8') as fIn:
    for line in fIn:
        train_sentences.append(InputExample(texts=[line.strip(), line.strip()]))

################# Download and load STSb #################
data_folder = 'data/stsbenchmark'
sts_dataset_path = f'{data_folder}/stsbenchmark.tsv.gz'

if not os.path.exists(sts_dataset_path):
    util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)


dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
    reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
    for row in reader:
        score = float(row['score']) / 5.0  # Normalize score to range 0 ... 1
        inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score)

        if row['split'] == 'dev':
            dev_samples.append(inp_example)
        elif row['split'] == 'test':
            test_samples.append(inp_example)

dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')

################# Intialize an SBERT model #################
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])


# For ContrastiveTension we need a special data loader to construct batches with the desired properties
train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True)

# As loss, we losses.ContrastiveTensionLoss
train_loss = losses.ContrastiveTensionLossInBatchNegatives(model, scale=1, similarity_fct=util.dot_score)


# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
          evaluator=dev_evaluator,
          epochs=1,
          evaluation_steps=1000,
          warmup_steps=1000,
          output_path=model_save_path,
          optimizer_params={'lr': 5e-5},
          use_amp=True          #Set to True, if your GPU supports FP16 cores
          )

########### Load the model and evaluate on test set

model = SentenceTransformer(model_save_path)
test_evaluator(model)