File size: 4,439 Bytes
2359bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
from sentence_transformers import SentenceTransformer, LoggingHandler
from sentence_transformers import models, util, evaluation, losses
import logging
import os
import gzip
from datetime import datetime
import torch
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
# Some training parameters. We use a batch size of 16, for every positive example we include 8-1=7 negative examples
# Sentences are truncated to 75 word pieces
model_name = 'distilbert-base-uncased'
batch_size = 16
pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio
max_seq_length = 75
num_epochs = 1
################# Download AskUbuntu and extract training corpus #################
askubuntu_folder = 'askubuntu'
output_path = 'output/train_askubuntu_ct-{}-{}-{}'.format(model_name, batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
## Download the AskUbuntu dataset from https://github.com/taolei87/askubuntu
for filename in ['text_tokenized.txt.gz', 'dev.txt', 'test.txt', 'train_random.txt']:
filepath = os.path.join(askubuntu_folder, filename)
if not os.path.exists(filepath):
util.http_get('https://github.com/taolei87/askubuntu/raw/master/'+filename, filepath)
# Read the corpus
corpus = {}
dev_test_ids = set()
with gzip.open(os.path.join(askubuntu_folder, 'text_tokenized.txt.gz'), 'rt', encoding='utf8') as fIn:
for line in fIn:
splits = line.strip().split("\t")
id = splits[0]
title = splits[1]
corpus[id] = title
# Read dev & test dataset
def read_eval_dataset(filepath):
dataset = []
with open(filepath) as fIn:
for line in fIn:
query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t")
if len(relevant_id) == 0: #Skip examples without relevant entries
continue
relevant_id = relevant_id.split(" ")
candidate_ids = candidate_ids.split(" ")
negative_ids = set(candidate_ids) - set(relevant_id)
dataset.append({
'query': corpus[query_id],
'positive': [corpus[pid] for pid in relevant_id],
'negative': [corpus[pid] for pid in negative_ids]
})
dev_test_ids.add(query_id)
dev_test_ids.update(candidate_ids)
return dataset
dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, 'dev.txt'))
test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, 'test.txt'))
## Now we need a list of train sentences.
## In this example we simply use all sentences that don't appear in the train/dev set
train_sentences = []
for id, sentence in corpus.items():
if id not in dev_test_ids:
train_sentences.append(sentence)
logging.info("{} train sentences".format(len(train_sentences)))
################# Intialize an SBERT model #################
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
################# Train the model #################
# For ContrastiveTension we need a special data loader to construct batches with the desired properties
train_dataloader = losses.ContrastiveTensionDataLoader(train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio)
# As loss, we losses.ContrastiveTensionLoss
train_loss = losses.ContrastiveTensionLoss(model)
# Create a dev evaluator
dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name='AskUbuntu dev')
test_evaluator = evaluation.RerankingEvaluator(test_dataset, name='AskUbuntu test')
logging.info("Start training")
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=1,
weight_decay=0,
warmup_steps=0,
optimizer_class=torch.optim.RMSprop,
optimizer_params={'lr': 1e-5},
use_amp=False #Set to True, if your GPU has optimized FP16 cores
)
latest_output_path = output_path + "-latest"
model.save(latest_output_path)
### Run test evaluation on the latest model. This is equivalent to not having a dev dataset
model = SentenceTransformer(latest_output_path)
test_evaluator(model)
|