File size: 3,530 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair
as input and outputs a label. Here, it output a continious labels 0...1 to indicate the similarity between the input pair.

It does NOT produce a sentence embedding and does NOT work for individual sentences.

Usage:
python training_stsbenchmark.py
"""
from torch.utils.data import DataLoader
import math
from sentence_transformers import LoggingHandler, util
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator
from sentence_transformers import InputExample
import logging
from datetime import datetime
import sys
import os
import gzip
import csv

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
logger = logging.getLogger(__name__)
#### /print debug information to stdout



#Check if dataset exsist. If not, download and extract  it
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz'

if not os.path.exists(sts_dataset_path):
    util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)



#Define our Cross-Encoder
train_batch_size = 16
num_epochs = 4
model_save_path = 'output/training_stsbenchmark-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

#We use distilroberta-base as base model and set num_labels=1, which predicts a continous score between 0 and 1
model = CrossEncoder('distilroberta-base', num_labels=1)



# Read STSb dataset
logger.info("Read STSbenchmark train dataset")

train_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
    reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
    for row in reader:
        score = float(row['score']) / 5.0  # Normalize score to range 0 ... 1

        if row['split'] == 'dev':
            dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
        elif row['split'] == 'test':
            test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
        else:
            #As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set
            train_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
            train_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score))


# We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)


# We add an evaluator, which evaluates the performance during training
evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev')


# Configure the training
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logger.info("Warmup-steps: {}".format(warmup_steps))


# Train the model
model.fit(train_dataloader=train_dataloader,
          evaluator=evaluator,
          epochs=num_epochs,
          warmup_steps=warmup_steps,
          output_path=model_save_path)


##### Load model and eval on test set
model = CrossEncoder(model_save_path)

evaluator = CECorrelationEvaluator.from_input_examples(test_samples, name='sts-test')
evaluator(model)