File size: 3,545 Bytes
2359bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
"""
This examples trains a CrossEncoder for the Quora Duplicate Questions Detection task. A CrossEncoder takes a sentence pair
as input and outputs a label. Here, it output a continious labels 0...1 to indicate the similarity between the input pair.
It does NOT produce a sentence embedding and does NOT work for individual sentences.
Usage:
python training_quora_duplicate_questions.py
"""
from torch.utils.data import DataLoader
import math
from sentence_transformers import LoggingHandler, util
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CEBinaryClassificationEvaluator
from sentence_transformers.readers import InputExample
import logging
from datetime import datetime
import os
import gzip
import csv
from zipfile import ZipFile
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
logger = logging.getLogger(__name__)
#### /print debug information to stdout
#Check if dataset exsist. If not, download and extract it
dataset_path = 'quora-dataset/'
if not os.path.exists(dataset_path):
logger.info("Dataset not found. Download")
zip_save_path = 'quora-IR-dataset.zip'
util.http_get(url='https://sbert.net/datasets/quora-IR-dataset.zip', path=zip_save_path)
with ZipFile(zip_save_path, 'r') as zip:
zip.extractall(dataset_path)
# Read the quora dataset split for classification
logger.info("Read train dataset")
train_samples = []
with open(os.path.join(dataset_path, 'classification', 'train_pairs.tsv'), 'r', encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
for row in reader:
train_samples.append(InputExample(texts=[row['question1'], row['question2']], label=int(row['is_duplicate'])))
train_samples.append(InputExample(texts=[row['question2'], row['question1']], label=int(row['is_duplicate'])))
logger.info("Read dev dataset")
dev_samples = []
with open(os.path.join(dataset_path, 'classification', 'dev_pairs.tsv'), 'r', encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
for row in reader:
dev_samples.append(InputExample(texts=[row['question1'], row['question2']], label=int(row['is_duplicate'])))
#Configuration
train_batch_size = 16
num_epochs = 4
model_save_path = 'output/training_quora-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
#We use distilroberta-base with a single label, i.e., it will output a value between 0 and 1 indicating the similarity of the two questions
model = CrossEncoder('distilroberta-base', num_labels=1)
# We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)
# We add an evaluator, which evaluates the performance during training
evaluator = CEBinaryClassificationEvaluator.from_input_examples(dev_samples, name='Quora-dev')
# Configure the training
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logger.info("Warmup-steps: {}".format(warmup_steps))
# Train the model
model.fit(train_dataloader=train_dataloader,
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=5000,
warmup_steps=warmup_steps,
output_path=model_save_path)
|