File size: 2,134 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
This examples loads a pre-trained model and evaluates it on the STSbenchmark dataset

Usage:
python evaluation_stsbenchmark.py
OR
python evaluation_stsbenchmark.py model_name
"""
from sentence_transformers import SentenceTransformer,  util, LoggingHandler, InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
import logging
import sys
import torch
import gzip
import os
import csv

script_folder_path = os.path.dirname(os.path.realpath(__file__))

#Limit torch to 4 threads
torch.set_num_threads(4)

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

model_name = sys.argv[1] if len(sys.argv) > 1 else 'stsb-distilroberta-base-v2'

# Load a named sentence model (based on BERT). This will download the model from our server.
# Alternatively, you can also pass a filepath to SentenceTransformer()
model = SentenceTransformer(model_name)


sts_dataset_path = 'data/stsbenchmark.tsv.gz'

if not os.path.exists(sts_dataset_path):
    util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)

train_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
    reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
    for row in reader:
        score = float(row['score']) / 5.0  # Normalize score to range 0 ... 1
        inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score)

        if row['split'] == 'dev':
            dev_samples.append(inp_example)
        elif row['split'] == 'test':
            test_samples.append(inp_example)
        else:
            train_samples.append(inp_example)

evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
model.evaluate(evaluator)

evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
model.evaluate(evaluator)