
Automating Reading of Ingredient Labels with

Computer Vision

Lena Merkli and Sonja Merkli

July 16, 2024

Abstract

With the recent advancements in computer vision and optical character
recognition and using a convolutional neural network [11] to cut out the
product from a picture, it has now become possible to reliably extract in-
gredient lists from the back of a product using the Anthropic API [4]. Open-
weight or even only on-device optical character recognition lacks the quality
to be used in a production environment, although the progress in develop-
ment is promising. The Anthropic API is also currently not feasible due to
the high cost of 1 Swiss Franc per 100 pictures.

The training code and data is available on GitHub: https://github

.com/lenamerkli/ingredient-scanner/. An inference example can be
found on HuggingFace: https://huggingface.co/lenamerkli/ingredie
nt-scanner.

This is an entry for the 2024 Swiss AI competition. More information:
https://www.ki-wettbewerb.ch/.

https://github.com/lenamerkli/ingredient-scanner/
https://github.com/lenamerkli/ingredient-scanner/
https://huggingface.co/lenamerkli/ingredient-scanner
https://huggingface.co/lenamerkli/ingredient-scanner
https://www.ki-wettbewerb.ch/

Contents

1 Project Plan 3
1.1 Architecture . 3

1.1.1 Image Filters . 3
1.1.2 First Vision Layer . 3
1.1.3 Image Distortion . 3
1.1.4 Second Vision Layer 3
1.1.5 Optical Character Recognition 4
1.1.6 Text Parsing with LLM 4
1.1.7 Lookup Table . 4

1.2 Training-Data Aggregation 4
1.2.1 Video Recording . 4
1.2.2 Manual Labeling . 4
1.2.3 Dataset Inflation . 4
1.2.4 Hybrid Labeling . 5

1.3 Coding . 5
1.3.1 Frame Extraction . 5
1.3.2 Dataset Inflation . 5
1.3.3 Image Sharpening . 5
1.3.4 Image Distortion . 5
1.3.5 Lookup Table . 5

1.4 AI Training . 5
1.5 Work Distribution . 5

2 First Vision Layer 6
2.1 Dataset . 6

2.1.1 Data Aggregation . 6
2.1.2 Synthesizing Additional Data 6
2.1.3 Reinforcement Learning from Human Feedback 7
2.1.4 Examples . 7

2.2 CNN Architecture . 7
2.2.1 Loss Functions . 8
2.2.2 Custom Loss Function 9

2.3 Training . 10

1

2.3.1 Result . 10

3 Second Vision Layer 12

4 Optical Character Recognition 13
4.1 Local . 13
4.2 API . 13
4.3 Image Format . 13

5 Large Language Model 14
5.1 Dataset . 14
5.2 Training . 14
5.3 Compression . 15

6 Result & Conclusion 16
6.1 Examples . 16
6.2 Conclusion . 19

Bibliography 20

2

Chapter 1

Project Plan

1.1 Architecture

Our computer vision project, Ingredient-scanner, uses multiple layers of ar-
tificial intelligence’s stacked on top of each other and connected with code.
This ensures the computational efficiency as it is possible to aid the individ-
ual layers with code and standardize the connections between them.

1.1.1 Image Filters

As the first step, each frame is parsed by image filters which sharpen the
edges and reduce the resolution as well as the color spectrum.

1.1.2 First Vision Layer

The first vision layer is a key-point detection convolutional neural network
and is going to detect the 4 corners of the packaging. This neural network
outputs two additional points at the top and the bottom of the packaging to
identify cylindrical objects. We assume as part of our project that spherical
products are in-existent.

1.1.3 Image Distortion

All data-points from the first vision layer are used to distort and crop the im-
age in such a way that the back of the product covers the entire rectangular
canvas as if it was scanned by a scanner in printer.

1.1.4 Second Vision Layer

Similar to the first one, this is also a key-point detection convolutional neural
network. It is going to identify the part of the back of the packaging with
the ingredient list. All other image data is discarded, although it can be
used in future projects.

3

1.1.5 Optical Character Recognition

This part turns pixels from an image into text characters. We won’t create
our own OCR engine as it probably would return sub-optimal results.

1.1.6 Text Parsing with LLM

It is known since the beginning of the existence of OCR that they sometimes
return additional white space, leave out white spaces and swap characters.
To combat this, the result of the last layer is standardized by a large language
model. In order to increase the accuracy, GBNF (Gerganov Bakus-Naur
Form) [6] along with a local llama.cpp [8] instance will be in use. This step
is also important to distinguish between ingredients and contaminants.

1.1.7 Lookup Table

Information about each ingredient and contaminant will be retrieved from
a lookup table. Included in each entry will be at least data on the following
parameters: lactose, gluten, vegan, vegetarian, egg, peanut, tree nut, soy
and fish. The exact number and contents will be determined once we reached
this step. The definition of those will be derived from Swiss law [1].

1.2 Training-Data Aggregation

1.2.1 Video Recording

Short video clips of the back of the product from different angles are recorded
to eliminate the hustle to take a lot of photos manually. These videos are
cut to remove unusable data if not the entirety of the product has been
captured. All frames are extracted from those videos with FFmpeg [20]
[13].

1.2.2 Manual Labeling

The pictures resulting from the previous process are labeled manually by
determining the corners and the curvature. The results are stored in JSON
[18], which is both human- and computer-readable.

1.2.3 Dataset Inflation

In order to save working hours, all already label data points are automat-
ically distorted, rotated and edited in other ways to create new synthetic
data. The coordinates of the corners will be edited in the same way.

4

1.2.4 Hybrid Labeling

Once a first version of the AIs are trained, these can be used to generate the
data of not yet labeled pictures. This data will be review and corrected if
necessary. We have been inspired by the reinforcement learning from human
feedback (RLHF) [15] [23] of large language models.

1.3 Coding

1.3.1 Frame Extraction

Extracts frames from all videos. Used in Video Recording.

1.3.2 Dataset Inflation

Creates new data-points from already existing ones. Used in Dataset Infla-
tion of Training-Data.

1.3.3 Image Sharpening

Sharpens the edges and reduces the resolution as well as the color spectrum.
Used in Image Filters.

1.3.4 Image Distortion

Distorts an image based on the corners and the curvature to create the
illusion of a flat and rectangular photo. Used in Image Distortion.

1.3.5 Lookup Table

Categorizes the found ingredients according to the database. Used in Lookup
Table.

1.4 AI Training

The two AIs will be trained after each other with PyTorch [17] on a local
server with a nVidia RTX 4060 with 8GB VRAM.

1.5 Work Distribution

Sonja will be responsible for the aggregation of the training data. Lena does
everything else.

5

Chapter 2

First Vision Layer

2.1 Dataset

The dataset contains just 190 hand-labeled images. Some labels do not
or only have parts of the curvature data which can easily interpolated
from the other points assuming it lies on a straight line. On GitHub, this
dataset is distributed over two directories: /data/full images/frames and
/data/full images/frames json.

2.1.1 Data Aggregation

As there was no existing dataset for such a project (hence this paper exists),
the authors created a dataset themselves by collecting and labeling photos.
A custom viewer, /data/full images/viewer.py, has aided in the labeling
process because it outputs the coordinates of all mouse clicks.

2.1.2 Synthesizing Additional Data

As these 138 data-points are clearly not enough to fine-tune a convolutional
neural network, a custom training data synthesizer has been applied. Six
different algorithms are in use for this purpose in the following order:

� add gaussian noise: Gaussian noise [10] with a mean of zero and a
sigma of one is applied to the entire image.

� adjust brightness: Adjusts the brightness of the image by a random
factor between 0.5 and 1.5.

� adjust contrast: Randomly adjusts the contrast by a value between
0.5 and 1.5.

� ∼ 50% rotate image: Rotate by 180°.

� ∼ 50% ImageOps.invert: Invert all the values of each color channel.

6

https://github.com/lenamerkli/ingredient-scanner/tree/main/data/full_images/frames
https://github.com/lenamerkli/ingredient-scanner/tree/main/data/full_images/frames_json
https://github.com/lenamerkli/ingredient-scanner/tree/main/data/full_images/frames_json

� ∼ 75% apply background: Zooms and rotates the image and places it
on a random spot on a random background [16].

These are implemented in /data/full images/generate synthetic.py. Some
of them only have a certain chance to be applied, see the percentages before
the function name. All of this results in a 15 to 16 times larger training
dataset.

2.1.3 Reinforcement Learning from Human Feedback

Even though it was planned to use RLHF to increase the size of the dataset
more efficiently, this idea was abandoned due to the introduction of the
aforementioned viewer which already increased productivity enough.

2.1.4 Examples

(a) Significant curvature (b) Synthetic

Figure 2.1: Example images from the dataset (cropped)

2.2 CNN Architecture

The first vision layer is a convolutional neural network based on the ResNet-
18 [11] architecture and weights. This underlying model has been modified
to output 12 floating point values and fine-tuned for this project. As an

7

https://github.com/lenamerkli/ingredient-scanner/blob/main/data/full_images/generate_synthetic.py

input, 224*224 images with 3 color channels are used, like in the original
ResNet-18.

2.2.1 Loss Functions

A variety of different loss functions were tested for a bit more than 16 epochs
each (there is a custom function which determines to exact epoch to stop).
Batch size is four and learning rate 10−4. These non-changing settings
caused some loss graphs to flatten out very early. Test were conducted
on the 28192c4 commit.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3
·10−2

Epoch

V
al
u
e

Loss
Average Distance

Figure 2.2: MSELoss

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4
·10−2

Epoch

V
al
u
e

Loss
Average Distance

Figure 2.3: L1Loss

8

https://github.com/lenamerkli/ingredient-scanner/tree/28192c4232818b29222363ee129ea6ac86af0e0b

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4
·10−2

Epoch

V
al
u
e

Loss
Average Distance

Figure 2.4: SmoothL1Loss

0 2 4 6 8 10 12 14 16
0

2.5

5

7.5

10

12.5

15

17.5

20

Epoch

V
al
u
e

Loss
Average Distance

Figure 2.5: CrossEntropyLoss

As it is not visible in the figure for the CrossEntropyLoss, the average
distance is about 0.3± 0.0125 and does not follow any apparent pattern.

2.2.2 Custom Loss Function

Errors in any two directions in this project are not the same. It is much
better to have a too large canvas as opposed to a too small one. A custom loss
function has been created to consider this fact. For each point the distance
is calculated using Pythagoras theorem. If it lies to the center of the target,
the distance is recalculated as distance = ((olddistance+ 1)β − 1) ∗ α.

9

0 2 4 6 8 10 12 14 16
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epoch

V
a
lu
e

Loss
Average Distance

Figure 2.6: IngredientScannerLoss (α = 1.0, β = 1.2), same parameters as
above

2.3 Training

In contrast to the project plan, a RTX 4070 laptop was used. This had the
major benefit of faster prototyping and debugging over the planned RTX
4060 server.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Epoch

V
al
u
e

Loss
Average Distance

Figure 2.7: Training loss (IngredientScannerLoss, α = 1.0, β = 1.2, batch =
8, learningRate = 5 ∗ 10−6)

2.3.1 Result

10

(a) (b)

Figure 2.8: Images not seen in training (cropped)

11

Chapter 3

Second Vision Layer

The proposed second vision layer was never developed due to several reasons:

� Optical character recognition is already good enough to recognize the
text from the cropped and distorted image from the first layer.

� The authors think after developing the first vision layer that this con-
volutional neural network would have been unnecessarily hard.

� It would have required to detect text itself as the placement of the
ingredients list on the packaging is arbitrary.

12

Chapter 4

Optical Character
Recognition

4.1 Local

Finding an optical character recognition engine with a good enough quality
was difficult and a local one even more. Thanks to insider access, a private
model was accessible. It is mentioned as “Qwen-VL-Next” in the source code
because it has no name yet and the optical character recognition engine is
based upon the openly available “Qwen-VL” [2] architecture. Even though
a large language model is included, it is not good enough for the purposes of
this paper yet. The authors of this papers respect the wish of the provider
and owner of it to not release further details.

4.2 API

Because other people do not have access to the local model, a drop-in re-
placement is available using the Anthropic API [4].

4.3 Image Format

Both the local and online optical character recognition engines have file size
limits. Of the tested image file formats, webp was found to be the best one
[22] [5].

13

Chapter 5

Large Language Model

5.1 Dataset

A synthetic data generator created a dataset with 104 examples based upon
patterns noticed in the optical character recognition engine of the local visual
language model. Too many different functions were implemented to fit onto
this report, these can be viewed in generate synthetic.py.

5.2 Training

The local version of unsloth [9] has been used for fine-tuning [21] [14]. The
base model is Qwen2-0.5B-Instruct [19] with 4bit bits-and-bytes [3] pulled
from https://huggingface.co/unsloth/Qwen2-0.5B-bnb-4bit. Train-
ing lasted for 256 steps or 0.2 epochs with the adamw 8bit [12] optimizer.

0 5 · 10−2 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

Epoch

V
a
lu
e

Loss

Figure 5.1: training loss (jagged due to rounding errors)

14

https://github.com/lenamerkli/ingredient-scanner/blob/main/data/ingredients/generate_synthethic.py
https://huggingface.co/unsloth/Qwen2-0.5B-bnb-4bit

5.3 Compression

The trained model is compressed to Q4 K M using the standardized GUFF
[7] format, version three, for faster inference later on.

15

Chapter 6

Result & Conclusion

6.1 Examples

(a) Image 1 (b) Image 2

Figure 6.1: Images not seen in training

16

================
Zutaten: Cashewkerne,

Haselnüsse, Kokosblütenzucker,
Kakaobohnen gemahlen,
Mandelöl kaltgepresst,
Kakaobutter, Himbeeren

gefriergetrocknet, Macapulver,
Bourbon-Vanille

================
Ohne Verunreinigungen

================
Gefundene tierische Zutaten:

keine
================
Gefundene potenziell tierische

Zutaten: keine
================

Gefundene Milchprodukte: keine
================
Gefundene Gluten: keine

================

(a) Result for image 1

================
Zutaten: Datteln getrocknet,
Sultaninen geölt, Haselnüsse

geröstet, Mandelmus,
Cashewnüsse, Haferflocken
glutenfrei, Haselnussmus,

Mandeln, Dattelsirup, Meersalz
================
Kann Spuren von Soja, Milch,
anderen Nüssen enthalten.
================
Gefundene tierische Zutaten:

keine
================
Gefundene potenziell tierische

Zutaten: keine
================

Gefundene Milchprodukte: Milch
================
Gefundene Gluten: keine

================

(b) Result for image 2

Figure 6.2: Results of the images above in German with OCR over API

17

================
Zutaten: Cashewnässe,

Haselnüsse, Kakao-Bohnen,
Mandelöl, Macapulver,

Bourbon-Vanille
================

Ohne Verunreinigungen
================
Gefundene tierische Zutaten:

keine
================
Gefundene potenziell tierische

Zutaten: keine
================

Gefundene Milchprodukte: keine
================
Gefundene Gluten: keine

================

(a) Result for image 1

================
Zutaten: Datteln, Sultaninen,
Raisins, Sultanines, Haselnüsse,

Haumensür, Mandelmus,
Cashewenür, Haselnussmus,

Mandeln, Dattelsirup, Meersalz
================
Kann Spuren von Soja, Milch

enthalten.
================
Gefundene tierische Zutaten:

keine
================
Gefundene potenziell tierische

Zutaten: keine
================

Gefundene Milchprodukte: Milch
================
Gefundene Gluten: keine

================

(b) Result for image 2

Figure 6.3: Results of the images above in German with local OCR

18

6.2 Conclusion

Although local (aka. on-device) optical character recognition is not yet
ready, we as the authors think of this project as a success. The project
is currently not financially feasible due to the Anthropic API costing 1

100
Swiss Francs. With more advances in machine learning, computer vision,
character recognition and compute power, this approach will probably work
on the smartphone itself.

A lot of features could be added, such as detecting labels like “lactose-
free” or “vegan”, reading the identifying bar-code, and allowing multiple
camera angles.

The choice of an only 0.5B parameter local large language model was a
mistake, as this is apparently not enough for the simple task of converting
plain text or markdown into a JSON list.

Due to resource constraints, a lot of synthetic data was used which prob-
ably negatively impacts the accuracy of the models. Vegan products are
over-represented, as both authors are mostly vegan households. Products
with a lot of ingredients were favored in the data collection due to being
more interesting.

19

Bibliography

[1] SR 817.022.16. “Ordonnance du DFI concernant l’information sur les
denrées alimentaires”. In: Fedlex (Feb. 1, 2024).

[2] Jinze Bai et al. Qwen-VL: A Versatile Vision-Language Model for
Understanding, Localization, Text Reading, and Beyond. 2023. arXiv:
2308.12966 [cs.CV]. url: https://arxiv.org/abs/2308.12966.

[3] “bitsandbytes”. In: HuggingFace (Mar. 14, 2024). url: https : / /

huggingface.co/docs/bitsandbytes/main/en/index (visited on
2024-07-15).

[4] “Claude 3.5 Sonnet”. In: Anthropic (June 21, 2024). url: https :
//www.anthropic.com/news/claude-3-5-sonnet (visited on 2024-
07-08).

[5] Benedikt Dornauer and Michael Felderer. Web Image Formats: As-
sessment of Their Real-World-Usage and Performance across Popu-
lar Web Browsers. 2023. arXiv: 2310.00788 [cs.PF]. url: https:
//arxiv.org/abs/2310.00788.

[6] Georgi Gerganov et al.GBNF: Formal grammar constrains for llama.cpp.
May 7, 2024. url: https://github.com/ggerganov/llama.cpp/
blob/master/grammars/README.md (visited on 2024-05-07).

[7] Georgi Gerganov et al. GGUF. May 24, 2024. url: https://github.
com/ggerganov/ggml/blob/master/docs/gguf.md (visited on 2024-
07-15).

[8] Georgi Gerganov et al. llama.cpp: LLM inference in C/C++. May 7,
2024. url: https://github.com/ggerganov/llama.cpp (visited on
2024-05-07).

[9] Daniel Han et al. unsloth: Finetune Llama 3, Mistral, Phi-3 and Gemma
2-5x faster with 80 percent less memory. July 15, 2024. url: https:
//github.com/unslothai/unsloth (visited on 2024-07-15).

[10] Charles Harris et al. NumPy Manual: numpy.random.normal. url:
https://numpy.org/doc/stable/reference/random/generated/

numpy.random.normal.html (visited on 2024-07-05).

20

https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/docs/bitsandbytes/main/en/index
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2310.00788
https://arxiv.org/abs/2310.00788
https://arxiv.org/abs/2310.00788
https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
https://github.com/ggerganov/llama.cpp
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html

[11] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV]. url: https://arxiv.org/abs/1512.
03385.

[12] “Introduction: 8-bit optimizers”. In: Huggingface (Mar. 15, 2024). url:
https://huggingface.co/docs/bitsandbytes/en/optimizers

(visited on 2024-07-16).

[13] Karl Kroening et al. ffmpeg-python: Python bindings for FFmpeg. July 11,
2022. url: https://kkroening.github.io/ffmpeg-python/ (vis-
ited on 2024-05-19).

[14] Dhanush Kumar. “Qwen2 - Finetuning Qwen2”. In: medium (June 8,
2024). url: https://medium.com/@danushidk507/qwen2-finetuning-
qwen2-f89c5c9d15da (visited on 2024-06-30).

[15] Nathan Lambert et al. “Illustrating Reinforcement Learning from Hu-
man Feedback (RLHF)”. In: Hugging Face Blog (2022).

[16] Muhammad Ahmad. Indoor Scenes CVPR 2019. 2019. url: https:
//www.kaggle.com/datasets/itsahmad/indoor-scenes-cvpr-

2019 (visited on 2024-06-21).

[17] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. 2019. arXiv: 1912.01703 [cs.LG].

[18] Felipe Pezoa et al. “Foundations of JSON schema”. In: Proceedings of
the 25th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee. 2016, pp. 263–273.

[19] “Qwen2 Technical Report”. In: (2024).

[20] Suramya Tomar. “Converting video formats with FFmpeg”. In: Linux
Journal 2006.146 (2006), p. 10.

[21] “Transformers: Fine-tune a pretrained model”. In:HuggingFace (May 14,
2024). url: https://huggingface.co/docs/transformers/en/
training (visited on 2024-07-15).

[22] James Zern, Pascal Massimino, and Jyrki Alakuijala. WebP Image
Format. Internet-Draft draft-zern-webp-15. Work in Progress. Internet
Engineering Task Force, Apr. 2024. 54 pp. url: https://datatracker.
ietf.org/doc/draft-zern-webp/15/.

[23] Daniel M. Ziegler et al. Fine-Tuning Language Models from Human
Preferences. 2020. arXiv: 1909.08593 [cs.CL].

21

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://huggingface.co/docs/bitsandbytes/en/optimizers
https://kkroening.github.io/ffmpeg-python/
https://medium.com/@danushidk507/qwen2-finetuning-qwen2-f89c5c9d15da
https://medium.com/@danushidk507/qwen2-finetuning-qwen2-f89c5c9d15da
https://www.kaggle.com/datasets/itsahmad/indoor-scenes-cvpr-2019
https://www.kaggle.com/datasets/itsahmad/indoor-scenes-cvpr-2019
https://www.kaggle.com/datasets/itsahmad/indoor-scenes-cvpr-2019
https://arxiv.org/abs/1912.01703
https://huggingface.co/docs/transformers/en/training
https://huggingface.co/docs/transformers/en/training
https://datatracker.ietf.org/doc/draft-zern-webp/15/
https://datatracker.ietf.org/doc/draft-zern-webp/15/
https://arxiv.org/abs/1909.08593

	Project Plan
	Architecture
	Image Filters
	First Vision Layer
	Image Distortion
	Second Vision Layer
	Optical Character Recognition
	Text Parsing with LLM
	Lookup Table

	Training-Data Aggregation
	Video Recording
	Manual Labeling
	Dataset Inflation
	Hybrid Labeling

	Coding
	Frame Extraction
	Dataset Inflation
	Image Sharpening
	Image Distortion
	Lookup Table

	AI Training
	Work Distribution

	First Vision Layer
	Dataset
	Data Aggregation
	Synthesizing Additional Data
	Reinforcement Learning from Human Feedback
	Examples

	CNN Architecture
	Loss Functions
	Custom Loss Function

	Training
	Result

	Second Vision Layer
	Optical Character Recognition
	Local
	API
	Image Format

	Large Language Model
	Dataset
	Training
	Compression

	Result & Conclusion
	Examples
	Conclusion

	Bibliography

