--- library_name: peft license: mit base_model: fxmarty/tiny-random-GemmaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: cb23749c-41bd-433d-b1a2-5a43063165ff results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-random-GemmaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5357759852985b4d_train_data.json ds_type: json format: custom path: /workspace/input_data/5357759852985b4d_train_data.json type: field_input: Complex_CoT field_instruction: Question field_output: Response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' ddp_timeout: 1800 debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true group_by_length: true hub_model_id: leixa/cb23749c-41bd-433d-b1a2-5a43063165ff hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 1350 micro_batch_size: 4 mlflow_experiment_name: /tmp/5357759852985b4d_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-08 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true relora_prune_ratio: 0.9 resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: acopia-grant wandb_mode: online wandb_name: 4825c224-af5c-46aa-8cf7-640b49b5a593 wandb_project: Gradients-On-112 wandb_run: your_name wandb_runid: 4825c224-af5c-46aa-8cf7-640b49b5a593 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# cb23749c-41bd-433d-b1a2-5a43063165ff This model is a fine-tuned version of [fxmarty/tiny-random-GemmaForCausalLM](https://huggingface.co/fxmarty/tiny-random-GemmaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 12.3842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 1350 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 12.4576 | | 12.4467 | 0.1037 | 150 | 12.4457 | | 12.4044 | 0.2073 | 300 | 12.4063 | | 12.3992 | 0.3110 | 450 | 12.4015 | | 12.3953 | 0.4147 | 600 | 12.3995 | | 12.3932 | 0.5183 | 750 | 12.3981 | | 12.3875 | 0.6220 | 900 | 12.3910 | | 12.3829 | 0.7256 | 1050 | 12.3873 | | 12.3854 | 0.8293 | 1200 | 12.3856 | | 12.3777 | 0.9330 | 1350 | 12.3842 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1