File size: 1,232 Bytes
522029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- denoising-diffusion
- image-generation
- diffusion-models-class
---

# 🧨 Diffusion Models Class - Unit 1: Unconditional Image Generation

This is a diffusion-based generative model trained for **unconditional image generation**, released as part of the [Diffusion Models Class](https://github.com/huggingface/diffusion-models-class) by Hugging Face.

This model learns to generate images from random noise via a **Denoising Diffusion Probabilistic Model (DDPM)** framework. It was trained on a toy dataset of **cute 🦋 images** (or other illustrative data, modify as needed).

---

## 📦 Model Details

- **Model type**: Denoising Diffusion Probabilistic Model (DDPM)
- **Library**: [🤗 Diffusers](https://github.com/huggingface/diffusers)
- **Framework**: PyTorch
- **Training objective**: Predict noise (ε) added in the forward process
- **Usage**: Unconditional image generation (no text prompt required)

---

## 📸 Example Usage

```python
from diffusers import DDPMPipeline

pipeline = DDPMPipeline.from_pretrained('larryliu002/sd-class-butterflies-32')
image = pipeline().images[0]
image.show()  # or display(image) in notebooks
```