Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,120 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: black-forest-labs/FLUX.1-dev
|
| 3 |
+
library_name: diffusers
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- text-to-image
|
| 7 |
+
- diffusers-training
|
| 8 |
+
- diffusers
|
| 9 |
+
- lora
|
| 10 |
+
- FLUX
|
| 11 |
+
- science
|
| 12 |
+
- materiomics
|
| 13 |
+
- bio-inspired
|
| 14 |
+
- materials science
|
| 15 |
+
instance_prompt: <leaf microstructure>
|
| 16 |
+
widget: []
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# FLUX.1 [dev] Fine-tuned with Leaf Images
|
| 20 |
+
|
| 21 |
+
FLUX.1 [dev] is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions.
|
| 22 |
+
|
| 23 |
+
## Model description
|
| 24 |
+
|
| 25 |
+
These are LoRA adaption weights for the FLUX.1 [dev] model (```black-forest-labs/FLUX.1-dev```).
|
| 26 |
+
|
| 27 |
+
## Trigger keywords
|
| 28 |
+
|
| 29 |
+
The following images were used during fine-tuning using the keyword \<leaf microstructure\>:
|
| 30 |
+
|
| 31 |
+

|
| 32 |
+
|
| 33 |
+
Full dataset used for training: (lamm-mit/leaf-flux-images-and-captions)
|
| 34 |
+
|
| 35 |
+
You should use \<leaf microstructure\> to trigger this feature during image generation.
|
| 36 |
+
|
| 37 |
+
## How to use
|
| 38 |
+
|
| 39 |
+
Defining some helper functions:
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
import os
|
| 43 |
+
from datetime import datetime
|
| 44 |
+
from PIL import Image
|
| 45 |
+
|
| 46 |
+
def generate_filename(base_name, extension=".png"):
|
| 47 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 48 |
+
return f"{base_name}_{timestamp}{extension}"
|
| 49 |
+
|
| 50 |
+
def save_image(image, directory, base_name="image_grid"):
|
| 51 |
+
filename = generate_filename(base_name)
|
| 52 |
+
file_path = os.path.join(directory, filename)
|
| 53 |
+
image.save(file_path)
|
| 54 |
+
print(f"Image saved as {file_path}")
|
| 55 |
+
|
| 56 |
+
def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
|
| 57 |
+
save_individual_files=False):
|
| 58 |
+
|
| 59 |
+
if not os.path.exists(save_dir):
|
| 60 |
+
os.makedirs(save_dir)
|
| 61 |
+
|
| 62 |
+
assert len(imgs) == rows * cols
|
| 63 |
+
|
| 64 |
+
w, h = imgs[0].size
|
| 65 |
+
grid = Image.new('RGB', size=(cols * w, rows * h))
|
| 66 |
+
grid_w, grid_h = grid.size
|
| 67 |
+
|
| 68 |
+
for i, img in enumerate(imgs):
|
| 69 |
+
grid.paste(img, box=(i % cols * w, i // cols * h))
|
| 70 |
+
if save_individual_files:
|
| 71 |
+
save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
|
| 72 |
+
|
| 73 |
+
if save and save_dir:
|
| 74 |
+
save_image(grid, save_dir, base_name)
|
| 75 |
+
|
| 76 |
+
return grid
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
### Text-to-image
|
| 80 |
+
|
| 81 |
+
Model loading:
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
from diffusers import FluxPipeline
|
| 85 |
+
import torch
|
| 86 |
+
|
| 87 |
+
repo_id = 'lamm-mit/leaf-FLUX'
|
| 88 |
+
|
| 89 |
+
pipeline = FluxPipeline.from_pretrained(
|
| 90 |
+
"black-forest-labs/FLUX.1-dev",
|
| 91 |
+
torch_dtype=torch.bfloat16,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
pipeline.load_lora_weights(repo_id, )
|
| 95 |
+
pipeline=pipeline.to('cuda')
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
Image generation:
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
+
prompt=('Generate an image of a golden spider web network intertwined with collagen veins, '
|
| 102 |
+
'forming a dynamic, leaf-inspired microstructure amidst a lush green background.' )
|
| 103 |
+
|
| 104 |
+
num_samples =2
|
| 105 |
+
num_rows = 2
|
| 106 |
+
n_steps=25
|
| 107 |
+
guidance_scale=3.5
|
| 108 |
+
all_images = []
|
| 109 |
+
for _ in range(num_rows):
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
|
| 113 |
+
guidance_scale=guidance_scale,).images
|
| 114 |
+
|
| 115 |
+
all_images.extend(image)
|
| 116 |
+
|
| 117 |
+
grid = image_grid(all_images, num_rows, num_samples, ave_individual_files=True, )
|
| 118 |
+
grid
|
| 119 |
+
```
|
| 120 |
+
|