File size: 7,879 Bytes
5e25f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd3b94d
5e25f59
 
 
 
 
 
 
 
 
 
 
 
 
d34cc1b
5e25f59
 
 
d34cc1b
5e25f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65e2119
 
5e25f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb21e8
5e25f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb21e8
d34cc1b
5e25f59
 
c09d5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e25f59
fcb21e8
 
 
5e25f59
fcb21e8
5e25f59
 
fcb21e8
 
5e25f59
 
 
fcb21e8
5e25f59
 
 
fcb21e8
 
c09d5b2
d34cc1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c09d5b2
5683510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c09d5b2
5683510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e25f59
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
---
base_model: black-forest-labs/FLUX.1-dev
library_name: diffusers
license: apache-2.0
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- FLUX.1-dev
- science
- materiomics
- bio-inspired
- materials science
- generative AI for science
datasets:
- lamm-mit/leaf-flux-images-and-captions
instance_prompt: <leaf microstructure>
widget: []
---

# FLUX.1 [dev] Fine-tuned with Biological and Nature Images

FLUX.1 [dev] is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. 

Install ```diffusers```

```raw
pip install -U diffusers
```

## Model description

These are LoRA adaption weights for the FLUX.1 [dev] model (```black-forest-labs/FLUX.1-dev```). The base model is, and you must first get access to it before loading this LoRA adapter. 

This LoRA adapter has rank=64 and alpha=64, trained for 16,000 steps. Earlier checkpoints are available in this repository as well (you can load these via the ```adapter``` parameter, see example below). 

## Trigger keywords

The model was fine-tuned with a set of ~1,600 images of biological materials, structures, shapes and other images of nature, using the keyword \<bioinspired\>.

You should use \<bioinspired\> to trigger these features during image generation.

## How to use

Defining some helper functions:

```python
import os
from datetime import datetime
from PIL import Image

def generate_filename(base_name, extension=".png"):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return f"{base_name}_{timestamp}{extension}"

def save_image(image, directory, base_name="image_grid"):
    filename = generate_filename(base_name)
    file_path = os.path.join(directory, filename)
    image.save(file_path)
    print(f"Image saved as {file_path}")

def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
              save_individual_files=False):
    
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
        
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
        if save_individual_files:
            save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
            
    if save and save_dir:
        save_image(grid, save_dir, base_name)
    
    return grid
```

### Text-to-image

Model loading:

```python
from diffusers import FluxPipeline
import torch

repo_id = 'lamm-mit/bioinspired-L-FLUX.1-dev'

pipeline = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=torch.bfloat16,
    max_sequence_length=512,
)

#pipeline.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Comment out if you have enough GPU VRAM

adapter='bioinspired-flux.safetensors' #Step 16000, final step
#adapter='bioinspired-flux-step-11000.safetensors' #Step 11000, earlier checkpoint

pipeline.load_lora_weights(repo_id, weight_name=adapter) #You need to use the weight_name parameter since the repo includes multiple checkpoints

pipeline=pipeline.to('cuda')
```

Image generation - Example #1:

```python
prompt="""Generate a futuristic, eco-friendly architectural concept utilizing a biomimetic composite material that integrates the structural efficiency of spider silk with the adaptive porosity of plant tissues. Utilize the following key features:

* Fibrous architecture inspired by spider silk, represented by sinuous lines and curved forms.
* Interconnected, spherical nodes reminiscent of plant cell walls, emphasizing growth and adaptation.
* Open cellular structures echoing the permeable nature of plant leaves, suggesting dynamic exchanges and self-regulation capabilities.
* Gradations of opacity and transparency inspired by the varying densities found in plant tissues, highlighting functional differentiation and multi-functionality.
"""

num_samples =2
num_rows = 2
n_steps=50
guidance_scale=3.5
all_images = []
for _ in range(num_rows):
     
        
    image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
                     guidance_scale=guidance_scale,).images
     
    all_images.extend(image)

grid = image_grid(all_images, num_rows, num_samples,  save_individual_files=True,  )
grid
```


![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/qdnFLSWbzXOKeZdAUzNMH.png)

Image generation - Example #2:

```python
prompt = """A leaf during fall foliage, <bioinspired>."""
negative_prompt=""
num_samples =2
num_rows =2
n_steps=25
guidance_scale=5
all_images = []
for _ in range(num_rows):
image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
                     guidance_scale=guidance_scale,).images
     
    all_images.extend(image)

grid = image_grid(all_images, num_rows, num_samples,  save_individual_files=True, )
grid
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Vp47_0V7r3wLrDUcEBttV.png)

Image generation - Example #3:

```python
prompt = "A sign that says 'PDF to AUDIO' with organic shapes, <bioinspired>" 
num_samples =1
num_rows =1
n_steps=25
guidance_scale=10
all_images = []
for _ in range(num_rows):
image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
                     guidance_scale=guidance_scale,).images
     
    all_images.extend(image)

grid = image_grid(all_images, num_rows, num_samples,  save_individual_files=True, )
grid
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/kMTHiPszlXnZoBT-4klLY.png)

Image generation - Example #4:

```python
prompt = "An architectural design in the style of <bioinspired>. The structure itself features key design elements as in <bioinspired>." 
num_samples =1
num_rows =1
n_steps=50
guidance_scale=5.
all_images = []
for _ in range(num_rows):
image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
                     guidance_scale=guidance_scale,).images
     
    all_images.extend(image)

grid = image_grid(all_images, num_rows, num_samples,  save_individual_files=True, )
grid
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/5t4cG5s7-Yf6bzBmNFqbQ.png)


Image generation - Example #5:

```python
prompt = "<bioinspired>, a beautiful landscape." 
num_samples =1
num_rows =1
n_steps=50
guidance_scale=5.0
all_images = []
for _ in range(num_rows):
image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
                     guidance_scale=guidance_scale,).images
     
    all_images.extend(image)

grid = image_grid(all_images, num_rows, num_samples,  save_individual_files=True, )
grid
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/ntM0EmRAD5E4ENman2k7e.png)


Image generation - Example #6:

```python
prompt = """A  coffee mug in an unusual shape that resembles a <bioinspired> river during fall foliage."""
num_samples =1
num_rows =1
n_steps=50
guidance_scale=3.5
all_images = []
for _ in range(num_rows):
image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
                     guidance_scale=guidance_scale,).images
     
    all_images.extend(image)

grid = image_grid(all_images, num_rows, num_samples,  save_individual_files=True, )
grid
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/2fyOE9RG8TABnfzbgBI0p.png)

```bibtext
@article{BioinspiredFluxBuehler2024,
  title={Fine-tuning image-generation models with biological patterns, shapes and topologies},
  author={Markus J. Buehler},
  journal={arXiv: XXXX.YYYYY},
  year={2024},
}