File size: 2,050 Bytes
f645d2d 8658fd8 d043139 e63b9dc d043139 f645d2d d043139 e63b9dc d043139 e63b9dc d043139 e63b9dc d043139 e63b9dc d043139 f7c7d73 d043139 e63b9dc d043139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: creativeml-openrail-m
base_model: Bingsu/my-korean-stable-diffusion-v1-5
training_prompt: A man is surfing
tags:
- tune-a-video
- text-to-video
- diffusers
- korean
inference: false
---
# Tune-A-VideKO - Korean Stable Diffusion v1-5
Github: [Kyujinpy/Tune-A-VideKO](https://github.com/KyujinHan/Tune-A-VideKO)
## Model Description
- Base model: [Bingsu/my-korean-stable-diffusion-v1-5](https://huggingface.co/Bingsu/my-korean-stable-diffusion-v1-5)
- Training prompt: A man is surfing

## Samples

Test prompt: λ―Έν€λ§μ°μ€κ° μνμ νκ³ μμ΅λλ€

Test prompt: ν μ¬μκ° μνμ νκ³ μμ΅λλ€

Test prompt: ν°μ μ·μ μ
μ λ¨μκ° λ°λ€λ₯Ό κ±·κ³ μμ΅λλ€
## Usage
Clone the github repo
```bash
git clone https://github.com/showlab/Tune-A-Video.git
```
Run inference code
```python
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
pretrained_model_path = "Bingsu/my-korean-stable-diffusion-v1-5"
unet_model_path = "kyujinpy/Tune-A-VideKO-v1-5"
unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
prompt = "ν°μ μ·μ μ
μ λ¨μκ° λ°λ€λ₯Ό κ±·κ³ μμ΅λλ€"
video = pipe(prompt, video_length=24, height=512, width=512, num_inference_steps=50, guidance_scale=12.5).videos
save_videos_grid(video, f"./{prompt}.gif")
```
## Related Papers:
- [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
- [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
|