File size: 12,659 Bytes
dcd5410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1603
- Map: 0.2667
- Map 50: 0.5044
- Map 75: 0.2456
- Map Small: 0.0909
- Map Medium: 0.2038
- Map Large: 0.3504
- Mar 1: 0.2709
- Mar 10: 0.4322
- Mar 100: 0.4537
- Mar Small: 0.1705
- Mar Medium: 0.3988
- Mar Large: 0.5803
- Map Coverall: 0.5892
- Mar 100 Coverall: 0.7071
- Map Face Shield: 0.1292
- Mar 100 Face Shield: 0.4657
- Map Gloves: 0.1967
- Mar 100 Gloves: 0.3534
- Map Goggles: 0.1026
- Mar 100 Goggles: 0.2918
- Map Mask: 0.316
- Mar 100 Mask: 0.4506

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log        | 1.0   | 91   | 1.8372          | 0.007  | 0.0258 | 0.0011 | 0.0141    | 0.0074     | 0.0074    | 0.0155 | 0.0699 | 0.1041  | 0.0717    | 0.1388     | 0.1297    | 0.0          | 0.0161           | 0.0011          | 0.0039              | 0.004      | 0.1531         | 0.0005      | 0.0682          | 0.0291   | 0.2794       |
| No log        | 2.0   | 182  | 1.6868          | 0.0122 | 0.0409 | 0.0051 | 0.0178    | 0.0127     | 0.0159    | 0.0234 | 0.1069 | 0.1472  | 0.1082    | 0.1665     | 0.1779    | 0.003        | 0.1219           | 0.0001          | 0.001               | 0.0101     | 0.2014         | 0.0016      | 0.0518          | 0.0464   | 0.3601       |
| No log        | 3.0   | 273  | 1.5610          | 0.027  | 0.0704 | 0.0145 | 0.0209    | 0.0215     | 0.0511    | 0.0768 | 0.1903 | 0.2325  | 0.1097    | 0.2337     | 0.2895    | 0.0339       | 0.3714           | 0.0019          | 0.0471              | 0.0181     | 0.2523         | 0.0026      | 0.0965          | 0.0784   | 0.3951       |
| No log        | 4.0   | 364  | 1.5762          | 0.0407 | 0.0899 | 0.0339 | 0.011     | 0.0217     | 0.0606    | 0.0826 | 0.1865 | 0.2398  | 0.104     | 0.2439     | 0.2762    | 0.1194       | 0.5415           | 0.0011          | 0.0441              | 0.0049     | 0.183          | 0.0008      | 0.0576          | 0.0772   | 0.3728       |
| No log        | 5.0   | 455  | 1.4866          | 0.0584 | 0.1347 | 0.0434 | 0.0265    | 0.0517     | 0.0705    | 0.1131 | 0.2302 | 0.2768  | 0.1274    | 0.2489     | 0.3144    | 0.1524       | 0.546            | 0.0068          | 0.0755              | 0.0229     | 0.274          | 0.017       | 0.0965          | 0.0932   | 0.3922       |
| 2.2578        | 6.0   | 546  | 1.4517          | 0.0782 | 0.1742 | 0.0608 | 0.0352    | 0.0653     | 0.0921    | 0.1191 | 0.2638 | 0.3064  | 0.1173    | 0.2795     | 0.3505    | 0.2028       | 0.6438           | 0.0052          | 0.1196              | 0.0309     | 0.2671         | 0.0075      | 0.1118          | 0.1448   | 0.3897       |
| 2.2578        | 7.0   | 637  | 1.4567          | 0.1202 | 0.2463 | 0.1019 | 0.0548    | 0.1205     | 0.1364    | 0.163  | 0.3228 | 0.356   | 0.1594    | 0.3255     | 0.4543    | 0.3099       | 0.7063           | 0.0102          | 0.2412              | 0.0491     | 0.2744         | 0.0557      | 0.1753          | 0.176    | 0.3831       |
| 2.2578        | 8.0   | 728  | 1.4039          | 0.1446 | 0.2979 | 0.1181 | 0.0584    | 0.1175     | 0.1695    | 0.1537 | 0.3259 | 0.3556  | 0.128     | 0.3103     | 0.4379    | 0.4289       | 0.6817           | 0.0142          | 0.2598              | 0.0604     | 0.2816         | 0.0327      | 0.1612          | 0.1867   | 0.3938       |
| 2.2578        | 9.0   | 819  | 1.3552          | 0.1623 | 0.3277 | 0.1455 | 0.0586    | 0.1179     | 0.2124    | 0.1759 | 0.3576 | 0.3833  | 0.1318    | 0.3387     | 0.4908    | 0.4853       | 0.6973           | 0.0153          | 0.2853              | 0.0861     | 0.3155         | 0.0257      | 0.2071          | 0.1988   | 0.4111       |
| 2.2578        | 10.0  | 910  | 1.3194          | 0.1819 | 0.3602 | 0.165  | 0.0737    | 0.126      | 0.2357    | 0.1881 | 0.3606 | 0.3881  | 0.1939    | 0.3337     | 0.4953    | 0.4961       | 0.6723           | 0.0203          | 0.3284              | 0.0938     | 0.3072         | 0.0449      | 0.2094          | 0.2543   | 0.423        |
| 1.2495        | 11.0  | 1001 | 1.3209          | 0.1814 | 0.3609 | 0.1521 | 0.067     | 0.1267     | 0.2353    | 0.188  | 0.3616 | 0.3892  | 0.2079    | 0.3159     | 0.5058    | 0.495        | 0.6643           | 0.025           | 0.3284              | 0.1066     | 0.3029         | 0.0508      | 0.2494          | 0.2297   | 0.4008       |
| 1.2495        | 12.0  | 1092 | 1.2817          | 0.1922 | 0.3946 | 0.154  | 0.0681    | 0.1501     | 0.2335    | 0.2042 | 0.3822 | 0.4057  | 0.1483    | 0.3511     | 0.5242    | 0.5286       | 0.6808           | 0.0544          | 0.3961              | 0.1025     | 0.3076         | 0.0462      | 0.2365          | 0.2295   | 0.4074       |
| 1.2495        | 13.0  | 1183 | 1.2797          | 0.207  | 0.4039 | 0.1838 | 0.0767    | 0.1446     | 0.2743    | 0.2117 | 0.3881 | 0.4101  | 0.1362    | 0.356      | 0.5387    | 0.5433       | 0.6893           | 0.0566          | 0.3745              | 0.1286     | 0.3061         | 0.0427      | 0.2671          | 0.2636   | 0.4136       |
| 1.2495        | 14.0  | 1274 | 1.2330          | 0.2165 | 0.416  | 0.1999 | 0.081     | 0.1565     | 0.2767    | 0.2247 | 0.3935 | 0.4251  | 0.1558    | 0.3763     | 0.5399    | 0.5671       | 0.6946           | 0.0579          | 0.3725              | 0.1453     | 0.331          | 0.0371      | 0.3071          | 0.2751   | 0.4202       |
| 1.2495        | 15.0  | 1365 | 1.2150          | 0.2214 | 0.4317 | 0.1966 | 0.0766    | 0.1686     | 0.287     | 0.2243 | 0.3993 | 0.4316  | 0.1896    | 0.3783     | 0.5457    | 0.5626       | 0.6866           | 0.075           | 0.4186              | 0.1465     | 0.339          | 0.0527      | 0.2812          | 0.2701   | 0.4325       |
| 1.2495        | 16.0  | 1456 | 1.1971          | 0.2229 | 0.4395 | 0.1913 | 0.0832    | 0.1531     | 0.2993    | 0.2335 | 0.4103 | 0.4389  | 0.1593    | 0.3698     | 0.5667    | 0.5625       | 0.6888           | 0.0567          | 0.4461              | 0.1539     | 0.3466         | 0.0716      | 0.2882          | 0.2698   | 0.4247       |
| 1.0777        | 17.0  | 1547 | 1.1886          | 0.2435 | 0.4578 | 0.228  | 0.0881    | 0.174      | 0.312     | 0.2487 | 0.4166 | 0.4476  | 0.1758    | 0.3803     | 0.581     | 0.5767       | 0.6978           | 0.1008          | 0.449               | 0.1588     | 0.3538         | 0.0615      | 0.2824          | 0.3194   | 0.4551       |
| 1.0777        | 18.0  | 1638 | 1.1980          | 0.2414 | 0.4659 | 0.2154 | 0.0895    | 0.1714     | 0.3089    | 0.2464 | 0.4181 | 0.4423  | 0.1624    | 0.3736     | 0.5643    | 0.5718       | 0.6875           | 0.1057          | 0.449               | 0.1619     | 0.343          | 0.0644      | 0.2894          | 0.3033   | 0.4424       |
| 1.0777        | 19.0  | 1729 | 1.1748          | 0.2448 | 0.4786 | 0.2174 | 0.0917    | 0.1801     | 0.3185    | 0.2488 | 0.424  | 0.4502  | 0.1551    | 0.3875     | 0.5786    | 0.5706       | 0.6902           | 0.1289          | 0.4745              | 0.1626     | 0.3473         | 0.0568      | 0.2918          | 0.3051   | 0.4473       |
| 1.0777        | 20.0  | 1820 | 1.1770          | 0.2544 | 0.4702 | 0.2366 | 0.0924    | 0.189      | 0.3271    | 0.2632 | 0.4292 | 0.4507  | 0.148     | 0.3992     | 0.5778    | 0.5753       | 0.7085           | 0.1107          | 0.4696              | 0.1718     | 0.339          | 0.0916      | 0.2906          | 0.3225   | 0.4457       |
| 1.0777        | 21.0  | 1911 | 1.1731          | 0.2539 | 0.4917 | 0.2379 | 0.0914    | 0.1924     | 0.3282    | 0.2559 | 0.4247 | 0.4493  | 0.1665    | 0.3907     | 0.5753    | 0.5741       | 0.6991           | 0.113           | 0.4471              | 0.1814     | 0.3444         | 0.0832      | 0.2976          | 0.3177   | 0.4584       |
| 0.9577        | 22.0  | 2002 | 1.1567          | 0.2622 | 0.4932 | 0.2434 | 0.0956    | 0.2006     | 0.3363    | 0.2639 | 0.4339 | 0.4564  | 0.1785    | 0.4013     | 0.5797    | 0.5848       | 0.7018           | 0.1226          | 0.4539              | 0.1924     | 0.357          | 0.0861      | 0.3082          | 0.325    | 0.4609       |
| 0.9577        | 23.0  | 2093 | 1.1649          | 0.2666 | 0.4975 | 0.2456 | 0.091     | 0.2019     | 0.35      | 0.2678 | 0.433  | 0.4573  | 0.1587    | 0.4036     | 0.5832    | 0.5831       | 0.7009           | 0.1563          | 0.4882              | 0.1947     | 0.3477         | 0.0803      | 0.3035          | 0.3186   | 0.4461       |
| 0.9577        | 24.0  | 2184 | 1.1525          | 0.2658 | 0.4949 | 0.2438 | 0.095     | 0.1972     | 0.3465    | 0.2677 | 0.4357 | 0.4585  | 0.1666    | 0.3978     | 0.5878    | 0.5886       | 0.704            | 0.1243          | 0.4588              | 0.1972     | 0.3617         | 0.0938      | 0.3082          | 0.3253   | 0.4597       |
| 0.9577        | 25.0  | 2275 | 1.1496          | 0.2665 | 0.4958 | 0.251  | 0.0927    | 0.1984     | 0.3513    | 0.2733 | 0.4334 | 0.4561  | 0.1568    | 0.3959     | 0.5837    | 0.5879       | 0.7071           | 0.1312          | 0.4696              | 0.1969     | 0.3599         | 0.0947      | 0.2918          | 0.3215   | 0.4519       |
| 0.9577        | 26.0  | 2366 | 1.1596          | 0.2667 | 0.5005 | 0.2434 | 0.092     | 0.1975     | 0.3517    | 0.2691 | 0.4346 | 0.4566  | 0.1714    | 0.3994     | 0.582     | 0.5894       | 0.7089           | 0.1298          | 0.4686              | 0.1964     | 0.357          | 0.0981      | 0.2988          | 0.3197   | 0.4494       |
| 0.9577        | 27.0  | 2457 | 1.1595          | 0.2679 | 0.5033 | 0.2455 | 0.0918    | 0.2041     | 0.3531    | 0.2706 | 0.4341 | 0.4549  | 0.1695    | 0.4039     | 0.5765    | 0.5868       | 0.7067           | 0.1368          | 0.4745              | 0.1972     | 0.3545         | 0.1001      | 0.2894          | 0.3186   | 0.4494       |
| 0.8804        | 28.0  | 2548 | 1.1584          | 0.2673 | 0.5038 | 0.2465 | 0.0916    | 0.2018     | 0.3518    | 0.2703 | 0.4332 | 0.4542  | 0.1698    | 0.3978     | 0.5809    | 0.5888       | 0.7067           | 0.1321          | 0.4676              | 0.1964     | 0.3542         | 0.1032      | 0.2929          | 0.3163   | 0.4498       |
| 0.8804        | 29.0  | 2639 | 1.1602          | 0.2666 | 0.5041 | 0.2454 | 0.0909    | 0.2018     | 0.349     | 0.2707 | 0.4317 | 0.4538  | 0.1701    | 0.397      | 0.58      | 0.5885       | 0.7071           | 0.129           | 0.4647              | 0.1968     | 0.3531         | 0.1016      | 0.2929          | 0.3171   | 0.451        |
| 0.8804        | 30.0  | 2730 | 1.1603          | 0.2667 | 0.5044 | 0.2456 | 0.0909    | 0.2038     | 0.3504    | 0.2709 | 0.4322 | 0.4537  | 0.1705    | 0.3988     | 0.5803    | 0.5892       | 0.7071           | 0.1292          | 0.4657              | 0.1967     | 0.3534         | 0.1026      | 0.2918          | 0.316    | 0.4506       |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0