Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +2 -2
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 279.94 +/- 22.48
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f1bbe04c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f1bbe0550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f1bbe05e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f1bbe0670>", "_build": "<function ActorCriticPolicy._build at 0x7f5f1bbe0700>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f1bbe0790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5f1bbe0820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f1bbe08b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f1bbe0940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f1bbe09d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f1bbe0a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f1bbe0af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f1bbd2d20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678077506133981286, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAOBvQL6Iy9i8HYxnuw6oALoxAUI+BRqlOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI16GakizxcECUhpRSlIwBbJRNQAGMAXSUR0Ch2r1xCIDYdX2UKGgGaAloD0MIaNDQP0Hgb0CUhpRSlGgVTTwBaBZHQKHcmZ9d/rl1fZQoaAZoCWgPQwiDbFm+LihuQJSGlFKUaBVNcgFoFkdAod3PP9kz43V9lChoBmgJaA9DCOCcEaW9pTFAlIaUUpRoFUvkaBZHQKHeg1IiC8R1fZQoaAZoCWgPQwiAYI4ev4RuQJSGlFKUaBVNIQFoFkdAod9vnEETx3V9lChoBmgJaA9DCL3EWKZfxkxAlIaUUpRoFUveaBZHQKHg0Gjbi6x1fZQoaAZoCWgPQwiGj4gpET9wQJSGlFKUaBVNLAFoFkdAoeHGJUHY6HV9lChoBmgJaA9DCECEuHJ25mVAlIaUUpRoFU3oA2gWR0Ch5gD15B1LdX2UKGgGaAloD0MIlu1D3nLTbECUhpRSlGgVTRMBaBZHQKHm2NHYpUh1fZQoaAZoCWgPQwgHfentT2ZtQJSGlFKUaBVNgQFoFkdAoejp5/smfHV9lChoBmgJaA9DCGlU4GSb9XFAlIaUUpRoFU1nAWgWR0Ch6gAIQe3hdX2UKGgGaAloD0MIpIgMq3iXMcCUhpRSlGgVS8JoFkdAoeqQuPFNtnV9lChoBmgJaA9DCEHUfQDSeHBAlIaUUpRoFU01AWgWR0Ch642Fev6kdX2UKGgGaAloD0MIDwu1pnk0cUCUhpRSlGgVTVwBaBZHQKHtbdld1Md1fZQoaAZoCWgPQwj9oZknVyZuQJSGlFKUaBVNFQFoFkdAoe4+cWj46HV9lChoBmgJaA9DCLuAlxm2321AlIaUUpRoFU0lAWgWR0Ch7ygi/wiJdX2UKGgGaAloD0MIHcnlPyQkbkCUhpRSlGgVS/1oFkdAofEQQL/jsHV9lChoBmgJaA9DCOIFEalp5W1AlIaUUpRoFU0ZAWgWR0Ch8j19Wp6ydX2UKGgGaAloD0MIvVXXoVpPcUCUhpRSlGgVTToBaBZHQKHzoGcnVoZ1fZQoaAZoCWgPQwiSs7CnXetxQJSGlFKUaBVNAAFoFkdAofTJVp9JBnV9lChoBmgJaA9DCPzh579HknBAlIaUUpRoFU0EAWgWR0Ch9wt7SiM6dX2UKGgGaAloD0MI4s0avK8/ckCUhpRSlGgVTSYBaBZHQKH4Z85S3sp1fZQoaAZoCWgPQwhD4bN1cKNuQJSGlFKUaBVNOQFoFkdAofmWEytV73V9lChoBmgJaA9DCCBgrdq1unFAlIaUUpRoFU01AWgWR0Ch+oz+NtIkdX2UKGgGaAloD0MIc/ON6J5scECUhpRSlGgVTVACaBZHQKH9ehStNi91fZQoaAZoCWgPQwgXZwxzgmBxQJSGlFKUaBVNJgFoFkdAof5jThHby3V9lChoBmgJaA9DCKM883IYtnFAlIaUUpRoFUv/aBZHQKH/5Xf642F1fZQoaAZoCWgPQwgBvXDnggVyQJSGlFKUaBVNWwFoFkdAogD588cMmXV9lChoBmgJaA9DCEoKLIApBHBAlIaUUpRoFU0wAWgWR0CiAe63AmAtdX2UKGgGaAloD0MItFn1udosckCUhpRSlGgVTSoBaBZHQKIDjrKNhmZ1fZQoaAZoCWgPQwijIeNRKoFBQJSGlFKUaBVL9mgWR0CiBESfL9uQdX2UKGgGaAloD0MIiBItefxFckCUhpRSlGgVTRoBaBZHQKIFG/QjUut1fZQoaAZoCWgPQwgrpWd6Se5wQJSGlFKUaBVNOAFoFkdAogYMGs3hoHV9lChoBmgJaA9DCGO1+X9V3WxAlIaUUpRoFU0vAWgWR0CiB8HmzSkTdX2UKGgGaAloD0MIMlcG1UYCcUCUhpRSlGgVTTABaBZHQKII0PQOWjZ1fZQoaAZoCWgPQwgiizTxTmhwQJSGlFKUaBVNJAFoFkdAognNqUNayXV9lChoBmgJaA9DCAX8GkkCH25AlIaUUpRoFU0wAWgWR0CiC4VD8cdYdX2UKGgGaAloD0MIqFfKMgThckCUhpRSlGgVTXQBaBZHQKIMowg1WKd1fZQoaAZoCWgPQwjh0Fs8vFpwQJSGlFKUaBVNFAFoFkdAog3cvTPSlXV9lChoBmgJaA9DCBBdUN+yOnBAlIaUUpRoFU0VAWgWR0CiDw68g6ltdX2UKGgGaAloD0MIxttKrw19cUCUhpRSlGgVTdYBaBZHQKISHa+N96V1fZQoaAZoCWgPQwgUe2gfK+AhQJSGlFKUaBVL42gWR0CiEx3zMA3ldX2UKGgGaAloD0MIF/TeGAK2bUCUhpRSlGgVTSABaBZHQKIUbyYoiLV1fZQoaAZoCWgPQwibPGU1Xe5vQJSGlFKUaBVNawFoFkdAohb1+LFXJnV9lChoBmgJaA9DCOzbSUQ4UnBAlIaUUpRoFU01AWgWR0CiF/BKL877dX2UKGgGaAloD0MImurJ/GNIcECUhpRSlGgVTRIBaBZHQKIYz67/XGx1fZQoaAZoCWgPQwgjhbLw9XZwQJSGlFKUaBVNJwFoFkdAohpkKiO/+XV9lChoBmgJaA9DCKpm1lLA8W5AlIaUUpRoFU0ZAWgWR0CiG0KlYU35dX2UKGgGaAloD0MIZQCo4kYxbUCUhpRSlGgVTR4BaBZHQKIcL99+gDl1fZQoaAZoCWgPQwgYXd4crnk1QJSGlFKUaBVL52gWR0CiHOdyLhrFdX2UKGgGaAloD0MIVDcXf9vYbUCUhpRSlGgVTTcBaBZHQKIek51/2Cd1fZQoaAZoCWgPQwgOiBBXzudwQJSGlFKUaBVNGQFoFkdAoh9y4Ds+mnV9lChoBmgJaA9DCEetMH1vinBAlIaUUpRoFU3gAmgWR0CiIu6IWP92dX2UKGgGaAloD0MIg1Dex1HObkCUhpRSlGgVTVkBaBZHQKIkFCm/Fit1fZQoaAZoCWgPQwi3CffKPOdwQJSGlFKUaBVNPQFoFkdAoiUola8pTnV9lChoBmgJaA9DCPIiE/Cr5nFAlIaUUpRoFU1fAWgWR0CiJuJC8e0YdX2UKGgGaAloD0MIaJYEqKmhcECUhpRSlGgVTTABaBZHQKIn38FY+0R1fZQoaAZoCWgPQwiuKZDZmYBwQJSGlFKUaBVNMwFoFkdAoijRLsa86HV9lChoBmgJaA9DCObnhqbsaXFAlIaUUpRoFU1DAWgWR0CiKrmlANXpdX2UKGgGaAloD0MIpYY2ABuQb0CUhpRSlGgVTVUBaBZHQKIsPWlMyrR1fZQoaAZoCWgPQwgGY0Si0CJwQJSGlFKUaBVNRQFoFkdAoi2ibUgB93V9lChoBmgJaA9DCOcaZmi8iXBAlIaUUpRoFU1RAWgWR0CiMCTdLxqgdX2UKGgGaAloD0MI9s/TgMHfa0CUhpRSlGgVTUsBaBZHQKIxrmyxA0N1fZQoaAZoCWgPQwgfDhKi/INsQJSGlFKUaBVNMAFoFkdAojMuby6MBXV9lChoBmgJaA9DCKrx0k1ibnFAlIaUUpRoFU05AWgWR0CiNFAVwgkkdX2UKGgGaAloD0MIS3LArubxcUCUhpRSlGgVTUoBaBZHQKI2B9Brvb51fZQoaAZoCWgPQwhNaf0tgaZwQJSGlFKUaBVNTgFoFkdAojcUWM0gsHV9lChoBmgJaA9DCLth26KMT3BAlIaUUpRoFU1KAWgWR0CiOCrMC9ytdX2UKGgGaAloD0MIHSCYo4f4cUCUhpRSlGgVTV8BaBZHQKI6As5GSZB1fZQoaAZoCWgPQwjaIJOMHEFxQJSGlFKUaBVNQgFoFkdAojsDHsC1Z3V9lChoBmgJaA9DCAQ91LZhkV9AlIaUUpRoFU3oA2gWR0CiP7FMAWBSdX2UKGgGaAloD0MIGXJsPUPwJ0CUhpRSlGgVS95oFkdAokBdYQrc03V9lChoBmgJaA9DCGk6OxkcZ25AlIaUUpRoFU0cAWgWR0CiQgBEa2nbdX2UKGgGaAloD0MIDk3Z6YfjcECUhpRSlGgVTVUBaBZHQKJDJmLcbit1fZQoaAZoCWgPQwim7zUER+5wQJSGlFKUaBVNQQFoFkdAokQqRW912nV9lChoBmgJaA9DCO3YCMRrRnFAlIaUUpRoFU0sAWgWR0CiRca0IC2ddX2UKGgGaAloD0MI8bvplh1ecECUhpRSlGgVTUMBaBZHQKJG3xS5y2h1fZQoaAZoCWgPQwioGr0aIJNxQJSGlFKUaBVNOAFoFkdAokf4bQ1JlXV9lChoBmgJaA9DCK/t7ZbkZnBAlIaUUpRoFU1SAWgWR0CiSXGwqy4XdX2UKGgGaAloD0MIMH+FzNXdcECUhpRSlGgVTTEBaBZHQKJLxDHfdh11fZQoaAZoCWgPQwiB7PXuj8FCQJSGlFKUaBVL7WgWR0CiTNB60IC2dX2UKGgGaAloD0MIW2CPiRSwbUCUhpRSlGgVTSgBaBZHQKJOMdat9x91fZQoaAZoCWgPQwguGjIeJYNwQJSGlFKUaBVNPAFoFkdAolCcyN4qw3V9lChoBmgJaA9DCLu3IjFBRTxAlIaUUpRoFUvpaBZHQKJRdXjlxOt1fZQoaAZoCWgPQwitE5fjlTZwQJSGlFKUaBVNdQFoFkdAolKnI8yN43V9lChoBmgJaA9DCEvpmV5i2m1AlIaUUpRoFU0kAWgWR0CiU467ulXSdX2UKGgGaAloD0MIVrsmpDVvb0CUhpRSlGgVTSQBaBZHQKJVHPyCnP51fZQoaAZoCWgPQwjhJw6gnzNwQJSGlFKUaBVNNQFoFkdAolYW3F1jiHV9lChoBmgJaA9DCPTcQleipW9AlIaUUpRoFU2qAWgWR0CiV50TDfm+dX2UKGgGaAloD0MIec4WEFpYcECUhpRSlGgVTQsBaBZHQKJZJ446wMZ1fZQoaAZoCWgPQwgpsWt7e3FxQJSGlFKUaBVNEAFoFkdAoln4G6f8M3V9lChoBmgJaA9DCHJQwkxbEnFAlIaUUpRoFU0nAWgWR0CiWtnSOR1YdX2UKGgGaAloD0MIELBW7RrlcECUhpRSlGgVTTUBaBZHQKJcgb+cYqJ1fZQoaAZoCWgPQwgiGt1BrE9xQJSGlFKUaBVNBQFoFkdAol1NMsYl6nV9lChoBmgJaA9DCK7vw0HC+WtAlIaUUpRoFU0kAWgWR0CiXjaQV9F4dX2UKGgGaAloD0MIPNwODcuIcUCUhpRSlGgVTRcBaBZHQKJfE11GLDR1fZQoaAZoCWgPQwgCgGPP3oZxQJSGlFKUaBVNegFoFkdAomD8leF+NXV9lChoBmgJaA9DCDTW/s72eW1AlIaUUpRoFU1RAWgWR0CiYhvdM0xedX2UKGgGaAloD0MI7+NojiwHbECUhpRSlGgVTWEBaBZHQKJjS30f5k91fZQoaAZoCWgPQwjFymjkM45wQJSGlFKUaBVNOgFoFkdAomTwexOclXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7a88051040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7a880510d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7a88051160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7a880511f0>", "_build": "<function ActorCriticPolicy._build at 0x7f7a88051280>", "forward": "<function ActorCriticPolicy.forward at 0x7f7a88051310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7a880513a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7a88051430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7a880514c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7a88051550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7a880515e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7a88051670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7a88052480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1500160, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678636333939706832, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPFi72hdrg/riq2vjAlCr4f2ja94+VlvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYRxcOqYvcUCUhpRSlIwBbJRL6owBdJRHQKphKN96Tnt1fZQoaAZoCWgPQwgkmdU7HOxyQJSGlFKUaBVNEAFoFkdAqmHosGxD9nV9lChoBmgJaA9DCE2FeCTeJm9AlIaUUpRoFU0EAWgWR0CqYpg6EJ0GdX2UKGgGaAloD0MIzhq8r8pGckCUhpRSlGgVTSkBaBZHQKpj/MSsbNt1fZQoaAZoCWgPQwgkRs8ttHtwQJSGlFKUaBVL/2gWR0CqZKdMK1G9dX2UKGgGaAloD0MIV3bB4Jo9bkCUhpRSlGgVTQcBaBZHQKplaMG5c1R1fZQoaAZoCWgPQwhblq/L8KZyQJSGlFKUaBVNAAFoFkdAqmbRZ2ZAp3V9lChoBmgJaA9DCNOFWP1Rm3BAlIaUUpRoFUvoaBZHQKpnc2dd3St1fZQoaAZoCWgPQwiRSNv4E2txQJSGlFKUaBVL7GgWR0CqaBfdAPd3dX2UKGgGaAloD0MI7PoFu2FEcECUhpRSlGgVTRMBaBZHQKpo18ohIOJ1fZQoaAZoCWgPQwjQYb68ADdxQJSGlFKUaBVL9GgWR0CqaXiT2WY4dX2UKGgGaAloD0MIoE/kSdIKc0CUhpRSlGgVTQMBaBZHQKpqyDIzWPN1fZQoaAZoCWgPQwgDfLd5IyxwQJSGlFKUaBVNBwFoFkdAqmtyZlWfb3V9lChoBmgJaA9DCOLK2Tuj5nBAlIaUUpRoFU0wAWgWR0CqbEvszEaVdX2UKGgGaAloD0MIaXOc24QqbUCUhpRSlGgVTQEBaBZHQKptmeS0Sh91fZQoaAZoCWgPQwhHdM+6xjJuQJSGlFKUaBVNJwFoFkdAqm53X05EMXV9lChoBmgJaA9DCH/cfvnklG5AlIaUUpRoFU0MAWgWR0CqbzTV2A5JdX2UKGgGaAloD0MI/dgkP2IObkCUhpRSlGgVS/hoFkdAqnAgV45cT3V9lChoBmgJaA9DCATidf0CLXFAlIaUUpRoFU0hAWgWR0CqcgIbwSamdX2UKGgGaAloD0MIkGtDxfhVcECUhpRSlGgVTQ0BaBZHQKpzJh8Yyft1fZQoaAZoCWgPQwg0nZ0Mzv9wQJSGlFKUaBVNJQFoFkdAqnRUqe9SM3V9lChoBmgJaA9DCAN5dvnWUnBAlIaUUpRoFUv8aBZHQKp1XrkbPyF1fZQoaAZoCWgPQwhvfsNEwzByQJSGlFKUaBVL/WgWR0Cqdz2hAWzodX2UKGgGaAloD0MIx/Xv+kxbckCUhpRSlGgVS/5oFkdAqnfsmlZX+3V9lChoBmgJaA9DCHiZYaOsL3FAlIaUUpRoFU0nAWgWR0CqeLSUTtb+dX2UKGgGaAloD0MIUYL+Qo+tbUCUhpRSlGgVTQgBaBZHQKp5aeSSvDB1fZQoaAZoCWgPQwjXvoBeOMtwQJSGlFKUaBVL7mgWR0Cqeqn2h7E6dX2UKGgGaAloD0MI0lYlkX0DbUCUhpRSlGgVTaUBaBZHQKp74LMLWqd1fZQoaAZoCWgPQwgE4nX9ggdzQJSGlFKUaBVNPgFoFkdAqny8Gu9vj3V9lChoBmgJaA9DCOASgH9Kr3FAlIaUUpRoFU0zAWgWR0CqfiXDWK/EdX2UKGgGaAloD0MIi/87ogL1cECUhpRSlGgVS+toFkdAqn7FmWdEs3V9lChoBmgJaA9DCF2I1R9hBkRAlIaUUpRoFUvYaBZHQKp/WGj9GZx1fZQoaAZoCWgPQwgSaoZUkQtxQJSGlFKUaBVL/mgWR0CqgAsPJ7swdX2UKGgGaAloD0MIlBXD1QHUcUCUhpRSlGgVTQEBaBZHQKqBVHKfWc11fZQoaAZoCWgPQwgriIGufcJwQJSGlFKUaBVL9mgWR0CqggKlYU35dX2UKGgGaAloD0MIFjQtsTKVcECUhpRSlGgVS/1oFkdAqoKu9tdiUnV9lChoBmgJaA9DCBBYObTIDXJAlIaUUpRoFU0YAWgWR0Cqg20S7GvPdX2UKGgGaAloD0MIc9u+R71QckCUhpRSlGgVS/JoFkdAqoS5R4yGjHV9lChoBmgJaA9DCMQhG0iXBW5AlIaUUpRoFU0EAWgWR0CqhWf6GgzydX2UKGgGaAloD0MIpYeh1Un4bkCUhpRSlGgVS/doFkdAqoYIfEGZ/nV9lChoBmgJaA9DCIAsRIfAnHFAlIaUUpRoFU0aAWgWR0CqhsqeTV2BdX2UKGgGaAloD0MIStOgaJ4AYkCUhpRSlGgVTegDaBZHQKqMP+so2GZ1fZQoaAZoCWgPQwjX3NH/cnJyQJSGlFKUaBVNDQFoFkdAqo6GWGATZnV9lChoBmgJaA9DCLYwC+3c4XFAlIaUUpRoFU0qA2gWR0Cqkl2yLQ5WdX2UKGgGaAloD0MIH6D7cmaHb0CUhpRSlGgVS/doFkdAqpRVV94NZ3V9lChoBmgJaA9DCPX1fM2yhnBAlIaUUpRoFU0XAWgWR0CqlXSaVlf7dX2UKGgGaAloD0MIk4rG2t+zb0CUhpRSlGgVS/hoFkdAqpZxw++ueXV9lChoBmgJaA9DCF4UPfCxZ3JAlIaUUpRoFU0XAWgWR0Cql1J+lTFVdX2UKGgGaAloD0MIj8TL07nsb0CUhpRSlGgVS/hoFkdAqpibXHzYmXV9lChoBmgJaA9DCNVcbjDUeHBAlIaUUpRoFUv1aBZHQKqZQCCjDbd1fZQoaAZoCWgPQwjej9svnxpxQJSGlFKUaBVNMgFoFkdAqpoLTpgTiHV9lChoBmgJaA9DCGptGtvru3JAlIaUUpRoFUv4aBZHQKqarOmixml1fZQoaAZoCWgPQwjdtu9Rf39fQJSGlFKUaBVN6ANoFkdAqp7syJsO5XV9lChoBmgJaA9DCL1V16EawXJAlIaUUpRoFU0MAWgWR0CqoE0Syt3fdX2UKGgGaAloD0MIJ4QOugQ1b0CUhpRSlGgVTREBaBZHQKqhCncclw91fZQoaAZoCWgPQwh9lXzsrr9yQJSGlFKUaBVNAQFoFkdAqqG7WI42j3V9lChoBmgJaA9DCJnZ5zGKBnBAlIaUUpRoFU0NAWgWR0CqonOGCZnddX2UKGgGaAloD0MIOShhpu3XbkCUhpRSlGgVTQUBaBZHQKqjy7OE/Sp1fZQoaAZoCWgPQwi5jQbw1rhxQJSGlFKUaBVNCQFoFkdAqqSNDrqt5nV9lChoBmgJaA9DCJNVEW7yPnJAlIaUUpRoFU0KAWgWR0CqpT9a+vhZdX2UKGgGaAloD0MIDHTtC2jYcUCUhpRSlGgVS/JoFkdAqqZ/Adn003V9lChoBmgJaA9DCDBjCtb4m3BAlIaUUpRoFU0VAWgWR0Cqp0YmkWRBdX2UKGgGaAloD0MI1a4JaY0/cUCUhpRSlGgVTQEBaBZHQKqn88cMmWt1fZQoaAZoCWgPQwheu7ThcJBwQJSGlFKUaBVL72gWR0CqqJf3nIQwdX2UKGgGaAloD0MI9rLttHWBcECUhpRSlGgVS/loFkdAqqnjpu/DcnV9lChoBmgJaA9DCOP9uP0ys3BAlIaUUpRoFU22A2gWR0Cqrn/keZG8dX2UKGgGaAloD0MI54pSQvANcUCUhpRSlGgVTRgBaBZHQKqwe0F8ohJ1fZQoaAZoCWgPQwiz7h8LUZBwQJSGlFKUaBVL8WgWR0CqsWUzsQd0dX2UKGgGaAloD0MILNUFvEz7b0CUhpRSlGgVTREBaBZHQKqyeufVZs91fZQoaAZoCWgPQwiorKbrSTRxQJSGlFKUaBVL3WgWR0CqswzqbBoFdX2UKGgGaAloD0MITYOieQAhUECUhpRSlGgVS71oFkdAqrQtjG1hLHV9lChoBmgJaA9DCM1Xycfur2NAlIaUUpRoFU3oA2gWR0CquE7m2b5NdX2UKGgGaAloD0MIlBRYAFPccECUhpRSlGgVS+BoFkdAqrjppN9H+nV9lChoBmgJaA9DCIJzRpT21khAlIaUUpRoFUu8aBZHQKq5Zzwtrbh1fZQoaAZoCWgPQwjfMqfLoitxQJSGlFKUaBVL6mgWR0CqughUaQ3hdX2UKGgGaAloD0MI7MA5I8oOZUCUhpRSlGgVTegDaBZHQKq9ilLOAy51fZQoaAZoCWgPQwiDo+TVOQxTQJSGlFKUaBVLvmgWR0Cqvgr9ETg3dX2UKGgGaAloD0MI0/TZAdf8ckCUhpRSlGgVTQoBaBZHQKq/W4xUNrl1fZQoaAZoCWgPQwg4hCo1+2lwQJSGlFKUaBVL+GgWR0CqwA9C/oJRdX2UKGgGaAloD0MI4gURqelvbkCUhpRSlGgVS/doFkdAqsC6mZVn3HV9lChoBmgJaA9DCKyRXWkZSRjAlIaUUpRoFUvDaBZHQKrBOa2nbZh1fZQoaAZoCWgPQwjqtG6D2uhxQJSGlFKUaBVL82gWR0CqwoO0LMLXdX2UKGgGaAloD0MI41KVtrgybkCUhpRSlGgVTRYBaBZHQKrDS1a4c3l1fZQoaAZoCWgPQwimKJfG71VxQJSGlFKUaBVL8GgWR0Cqw+/9YOlPdX2UKGgGaAloD0MITdwqiAF+ckCUhpRSlGgVS+xoFkdAqsSVVBD5TXV9lChoBmgJaA9DCK2JBb5i+nJAlIaUUpRoFU0FAWgWR0Cqxez238XOdX2UKGgGaAloD0MIk3Ahj6DCcUCUhpRSlGgVS/toFkdAqsax6jWTYHV9lChoBmgJaA9DCMKGp1fKh3FAlIaUUpRoFU0WAWgWR0Cqx7iF0xM4dX2UKGgGaAloD0MIxt/2BMmXcUCUhpRSlGgVS/VoFkdAqsihw4sEq3V9lChoBmgJaA9DCNap8j0jM25AlIaUUpRoFUv3aBZHQKrKdzGPxQV1fZQoaAZoCWgPQwhDN/sDJY9xQJSGlFKUaBVNMAFoFkdAqsuqfHxSYXV9lChoBmgJaA9DCIi7ehUZeXFAlIaUUpRoFUv8aBZHQKrMr22XsxB1fZQoaAZoCWgPQwhig4WTdPVwQJSGlFKUaBVNIgFoFkdAqs3UKkVN6HV9lChoBmgJaA9DCCV6GcUy0nFAlIaUUpRoFU0QAWgWR0Cqzz2DHwPRdX2UKGgGaAloD0MIVrlQ+VfDYkCUhpRSlGgVTegDaBZHQKrTHQla8pV1fZQoaAZoCWgPQwgC2evdX9xwQJSGlFKUaBVNhANoFkdAqtXRxtHhCXV9lChoBmgJaA9DCEJ79fHQKm9AlIaUUpRoFUvzaBZHQKrXGhW5pal1fZQoaAZoCWgPQwg+ldOekhVzQJSGlFKUaBVL/GgWR0Cq174e9zwMdX2UKGgGaAloD0MIXK/pQQH+ckCUhpRSlGgVTQEBaBZHQKrYZlXA/LV1fZQoaAZoCWgPQwgHeNLC5WBxQJSGlFKUaBVNDQFoFkdAqtkg8r7O3XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5860, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23c95e3b21d7cf2f573feab536805d3becf6097f442d1cf81bc850e6a2e27c63
|
3 |
+
size 146715
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,21 +43,21 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 1,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
@@ -87,7 +87,7 @@
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7a88051040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7a880510d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7a88051160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7a880511f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7a88051280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7a88051310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7a880513a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7a88051430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7a880514c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7a88051550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7a880515e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7a88051670>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7a88052480>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 1,
|
46 |
+
"num_timesteps": 1500160,
|
47 |
+
"_total_timesteps": 1500000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678636333939706832,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPFi72hdrg/riq2vjAlCr4f2ja94+VlvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.00010666666666669933,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYRxcOqYvcUCUhpRSlIwBbJRL6owBdJRHQKphKN96Tnt1fZQoaAZoCWgPQwgkmdU7HOxyQJSGlFKUaBVNEAFoFkdAqmHosGxD9nV9lChoBmgJaA9DCE2FeCTeJm9AlIaUUpRoFU0EAWgWR0CqYpg6EJ0GdX2UKGgGaAloD0MIzhq8r8pGckCUhpRSlGgVTSkBaBZHQKpj/MSsbNt1fZQoaAZoCWgPQwgkRs8ttHtwQJSGlFKUaBVL/2gWR0CqZKdMK1G9dX2UKGgGaAloD0MIV3bB4Jo9bkCUhpRSlGgVTQcBaBZHQKplaMG5c1R1fZQoaAZoCWgPQwhblq/L8KZyQJSGlFKUaBVNAAFoFkdAqmbRZ2ZAp3V9lChoBmgJaA9DCNOFWP1Rm3BAlIaUUpRoFUvoaBZHQKpnc2dd3St1fZQoaAZoCWgPQwiRSNv4E2txQJSGlFKUaBVL7GgWR0CqaBfdAPd3dX2UKGgGaAloD0MI7PoFu2FEcECUhpRSlGgVTRMBaBZHQKpo18ohIOJ1fZQoaAZoCWgPQwjQYb68ADdxQJSGlFKUaBVL9GgWR0CqaXiT2WY4dX2UKGgGaAloD0MIoE/kSdIKc0CUhpRSlGgVTQMBaBZHQKpqyDIzWPN1fZQoaAZoCWgPQwgDfLd5IyxwQJSGlFKUaBVNBwFoFkdAqmtyZlWfb3V9lChoBmgJaA9DCOLK2Tuj5nBAlIaUUpRoFU0wAWgWR0CqbEvszEaVdX2UKGgGaAloD0MIaXOc24QqbUCUhpRSlGgVTQEBaBZHQKptmeS0Sh91fZQoaAZoCWgPQwhHdM+6xjJuQJSGlFKUaBVNJwFoFkdAqm53X05EMXV9lChoBmgJaA9DCH/cfvnklG5AlIaUUpRoFU0MAWgWR0CqbzTV2A5JdX2UKGgGaAloD0MI/dgkP2IObkCUhpRSlGgVS/hoFkdAqnAgV45cT3V9lChoBmgJaA9DCATidf0CLXFAlIaUUpRoFU0hAWgWR0CqcgIbwSamdX2UKGgGaAloD0MIkGtDxfhVcECUhpRSlGgVTQ0BaBZHQKpzJh8Yyft1fZQoaAZoCWgPQwg0nZ0Mzv9wQJSGlFKUaBVNJQFoFkdAqnRUqe9SM3V9lChoBmgJaA9DCAN5dvnWUnBAlIaUUpRoFUv8aBZHQKp1XrkbPyF1fZQoaAZoCWgPQwhvfsNEwzByQJSGlFKUaBVL/WgWR0Cqdz2hAWzodX2UKGgGaAloD0MIx/Xv+kxbckCUhpRSlGgVS/5oFkdAqnfsmlZX+3V9lChoBmgJaA9DCHiZYaOsL3FAlIaUUpRoFU0nAWgWR0CqeLSUTtb+dX2UKGgGaAloD0MIUYL+Qo+tbUCUhpRSlGgVTQgBaBZHQKp5aeSSvDB1fZQoaAZoCWgPQwjXvoBeOMtwQJSGlFKUaBVL7mgWR0Cqeqn2h7E6dX2UKGgGaAloD0MI0lYlkX0DbUCUhpRSlGgVTaUBaBZHQKp74LMLWqd1fZQoaAZoCWgPQwgE4nX9ggdzQJSGlFKUaBVNPgFoFkdAqny8Gu9vj3V9lChoBmgJaA9DCOASgH9Kr3FAlIaUUpRoFU0zAWgWR0CqfiXDWK/EdX2UKGgGaAloD0MIi/87ogL1cECUhpRSlGgVS+toFkdAqn7FmWdEs3V9lChoBmgJaA9DCF2I1R9hBkRAlIaUUpRoFUvYaBZHQKp/WGj9GZx1fZQoaAZoCWgPQwgSaoZUkQtxQJSGlFKUaBVL/mgWR0CqgAsPJ7swdX2UKGgGaAloD0MIlBXD1QHUcUCUhpRSlGgVTQEBaBZHQKqBVHKfWc11fZQoaAZoCWgPQwgriIGufcJwQJSGlFKUaBVL9mgWR0CqggKlYU35dX2UKGgGaAloD0MIFjQtsTKVcECUhpRSlGgVS/1oFkdAqoKu9tdiUnV9lChoBmgJaA9DCBBYObTIDXJAlIaUUpRoFU0YAWgWR0Cqg20S7GvPdX2UKGgGaAloD0MIc9u+R71QckCUhpRSlGgVS/JoFkdAqoS5R4yGjHV9lChoBmgJaA9DCMQhG0iXBW5AlIaUUpRoFU0EAWgWR0CqhWf6GgzydX2UKGgGaAloD0MIpYeh1Un4bkCUhpRSlGgVS/doFkdAqoYIfEGZ/nV9lChoBmgJaA9DCIAsRIfAnHFAlIaUUpRoFU0aAWgWR0CqhsqeTV2BdX2UKGgGaAloD0MIStOgaJ4AYkCUhpRSlGgVTegDaBZHQKqMP+so2GZ1fZQoaAZoCWgPQwjX3NH/cnJyQJSGlFKUaBVNDQFoFkdAqo6GWGATZnV9lChoBmgJaA9DCLYwC+3c4XFAlIaUUpRoFU0qA2gWR0Cqkl2yLQ5WdX2UKGgGaAloD0MIH6D7cmaHb0CUhpRSlGgVS/doFkdAqpRVV94NZ3V9lChoBmgJaA9DCPX1fM2yhnBAlIaUUpRoFU0XAWgWR0CqlXSaVlf7dX2UKGgGaAloD0MIk4rG2t+zb0CUhpRSlGgVS/hoFkdAqpZxw++ueXV9lChoBmgJaA9DCF4UPfCxZ3JAlIaUUpRoFU0XAWgWR0Cql1J+lTFVdX2UKGgGaAloD0MIj8TL07nsb0CUhpRSlGgVS/hoFkdAqpibXHzYmXV9lChoBmgJaA9DCNVcbjDUeHBAlIaUUpRoFUv1aBZHQKqZQCCjDbd1fZQoaAZoCWgPQwjej9svnxpxQJSGlFKUaBVNMgFoFkdAqpoLTpgTiHV9lChoBmgJaA9DCGptGtvru3JAlIaUUpRoFUv4aBZHQKqarOmixml1fZQoaAZoCWgPQwjdtu9Rf39fQJSGlFKUaBVN6ANoFkdAqp7syJsO5XV9lChoBmgJaA9DCL1V16EawXJAlIaUUpRoFU0MAWgWR0CqoE0Syt3fdX2UKGgGaAloD0MIJ4QOugQ1b0CUhpRSlGgVTREBaBZHQKqhCncclw91fZQoaAZoCWgPQwh9lXzsrr9yQJSGlFKUaBVNAQFoFkdAqqG7WI42j3V9lChoBmgJaA9DCJnZ5zGKBnBAlIaUUpRoFU0NAWgWR0CqonOGCZnddX2UKGgGaAloD0MIOShhpu3XbkCUhpRSlGgVTQUBaBZHQKqjy7OE/Sp1fZQoaAZoCWgPQwi5jQbw1rhxQJSGlFKUaBVNCQFoFkdAqqSNDrqt5nV9lChoBmgJaA9DCJNVEW7yPnJAlIaUUpRoFU0KAWgWR0CqpT9a+vhZdX2UKGgGaAloD0MIDHTtC2jYcUCUhpRSlGgVS/JoFkdAqqZ/Adn003V9lChoBmgJaA9DCDBjCtb4m3BAlIaUUpRoFU0VAWgWR0Cqp0YmkWRBdX2UKGgGaAloD0MI1a4JaY0/cUCUhpRSlGgVTQEBaBZHQKqn88cMmWt1fZQoaAZoCWgPQwheu7ThcJBwQJSGlFKUaBVL72gWR0CqqJf3nIQwdX2UKGgGaAloD0MI9rLttHWBcECUhpRSlGgVS/loFkdAqqnjpu/DcnV9lChoBmgJaA9DCOP9uP0ys3BAlIaUUpRoFU22A2gWR0Cqrn/keZG8dX2UKGgGaAloD0MI54pSQvANcUCUhpRSlGgVTRgBaBZHQKqwe0F8ohJ1fZQoaAZoCWgPQwiz7h8LUZBwQJSGlFKUaBVL8WgWR0CqsWUzsQd0dX2UKGgGaAloD0MILNUFvEz7b0CUhpRSlGgVTREBaBZHQKqyeufVZs91fZQoaAZoCWgPQwiorKbrSTRxQJSGlFKUaBVL3WgWR0CqswzqbBoFdX2UKGgGaAloD0MITYOieQAhUECUhpRSlGgVS71oFkdAqrQtjG1hLHV9lChoBmgJaA9DCM1Xycfur2NAlIaUUpRoFU3oA2gWR0CquE7m2b5NdX2UKGgGaAloD0MIlBRYAFPccECUhpRSlGgVS+BoFkdAqrjppN9H+nV9lChoBmgJaA9DCIJzRpT21khAlIaUUpRoFUu8aBZHQKq5Zzwtrbh1fZQoaAZoCWgPQwjfMqfLoitxQJSGlFKUaBVL6mgWR0CqughUaQ3hdX2UKGgGaAloD0MI7MA5I8oOZUCUhpRSlGgVTegDaBZHQKq9ilLOAy51fZQoaAZoCWgPQwiDo+TVOQxTQJSGlFKUaBVLvmgWR0Cqvgr9ETg3dX2UKGgGaAloD0MI0/TZAdf8ckCUhpRSlGgVTQoBaBZHQKq/W4xUNrl1fZQoaAZoCWgPQwg4hCo1+2lwQJSGlFKUaBVL+GgWR0CqwA9C/oJRdX2UKGgGaAloD0MI4gURqelvbkCUhpRSlGgVS/doFkdAqsC6mZVn3HV9lChoBmgJaA9DCKyRXWkZSRjAlIaUUpRoFUvDaBZHQKrBOa2nbZh1fZQoaAZoCWgPQwjqtG6D2uhxQJSGlFKUaBVL82gWR0CqwoO0LMLXdX2UKGgGaAloD0MI41KVtrgybkCUhpRSlGgVTRYBaBZHQKrDS1a4c3l1fZQoaAZoCWgPQwimKJfG71VxQJSGlFKUaBVL8GgWR0Cqw+/9YOlPdX2UKGgGaAloD0MITdwqiAF+ckCUhpRSlGgVS+xoFkdAqsSVVBD5TXV9lChoBmgJaA9DCK2JBb5i+nJAlIaUUpRoFU0FAWgWR0Cqxez238XOdX2UKGgGaAloD0MIk3Ahj6DCcUCUhpRSlGgVS/toFkdAqsax6jWTYHV9lChoBmgJaA9DCMKGp1fKh3FAlIaUUpRoFU0WAWgWR0Cqx7iF0xM4dX2UKGgGaAloD0MIxt/2BMmXcUCUhpRSlGgVS/VoFkdAqsihw4sEq3V9lChoBmgJaA9DCNap8j0jM25AlIaUUpRoFUv3aBZHQKrKdzGPxQV1fZQoaAZoCWgPQwhDN/sDJY9xQJSGlFKUaBVNMAFoFkdAqsuqfHxSYXV9lChoBmgJaA9DCIi7ehUZeXFAlIaUUpRoFUv8aBZHQKrMr22XsxB1fZQoaAZoCWgPQwhig4WTdPVwQJSGlFKUaBVNIgFoFkdAqs3UKkVN6HV9lChoBmgJaA9DCCV6GcUy0nFAlIaUUpRoFU0QAWgWR0Cqzz2DHwPRdX2UKGgGaAloD0MIVrlQ+VfDYkCUhpRSlGgVTegDaBZHQKrTHQla8pV1fZQoaAZoCWgPQwgC2evdX9xwQJSGlFKUaBVNhANoFkdAqtXRxtHhCXV9lChoBmgJaA9DCEJ79fHQKm9AlIaUUpRoFUvzaBZHQKrXGhW5pal1fZQoaAZoCWgPQwg+ldOekhVzQJSGlFKUaBVL/GgWR0Cq174e9zwMdX2UKGgGaAloD0MIXK/pQQH+ckCUhpRSlGgVTQEBaBZHQKrYZlXA/LV1fZQoaAZoCWgPQwgHeNLC5WBxQJSGlFKUaBVNDQFoFkdAqtkg8r7O3XVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 5860,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c55c8eb5bae813db51dfa24ba2bc121b96c33ce914707ae089424005c441f4cf
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1446dac5a0ede25064289a03e7712d8c98c1d4ce601eae2b1a7573f8a9baf6c
|
3 |
size 43393
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
- OS: Linux-5.10.147+-x86_64-with-glibc2.
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
- GPU Enabled: True
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
- GPU Enabled: True
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 279.9440783718583, "std_reward": 22.478967763820943, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T16:50:42.062706"}
|