|
import pandas as pd
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.naive_bayes import MultinomialNB
|
|
from sklearn.metrics import classification_report
|
|
import joblib
|
|
|
|
|
|
data_path = 'trainingdata.txt'
|
|
data = []
|
|
|
|
|
|
with open(data_path, 'r') as file:
|
|
lines = file.readlines()
|
|
for line in lines:
|
|
|
|
parts = line.rsplit(', "', 1)
|
|
if len(parts) == 2:
|
|
question = parts[0].strip().strip('"')
|
|
tool = parts[1].strip().strip('",')
|
|
data.append((question, tool))
|
|
|
|
|
|
df = pd.DataFrame(data, columns=['question', 'tool'])
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(df['question'], df['tool'], test_size=0.2, random_state=42)
|
|
|
|
|
|
vectorizer = TfidfVectorizer()
|
|
X_train_vectorized = vectorizer.fit_transform(X_train)
|
|
X_test_vectorized = vectorizer.transform(X_test)
|
|
|
|
|
|
clf = MultinomialNB()
|
|
clf.fit(X_train_vectorized, y_train)
|
|
|
|
|
|
y_pred = clf.predict(X_test_vectorized)
|
|
|
|
|
|
print(classification_report(y_test, y_pred))
|
|
|
|
|
|
joblib.dump(clf, 'findtool_model.pkl')
|
|
joblib.dump(vectorizer, 'vectorizer.pkl')
|
|
|
|
|