kuladeepmantri's picture
Upload 3 files
43d5a53 verified
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
import joblib
# Load the dataset from the txt file
data_path = 'trainingdata.txt'
data = []
# Read the file and parse the data
with open(data_path, 'r') as file:
lines = file.readlines()
for line in lines:
# Split each line into question and tool by the last comma
parts = line.rsplit(', "', 1)
if len(parts) == 2:
question = parts[0].strip().strip('"')
tool = parts[1].strip().strip('",')
data.append((question, tool))
# Create a DataFrame
df = pd.DataFrame(data, columns=['question', 'tool'])
# Split the data
X_train, X_test, y_train, y_test = train_test_split(df['question'], df['tool'], test_size=0.2, random_state=42)
# Vectorize the text data
vectorizer = TfidfVectorizer()
X_train_vectorized = vectorizer.fit_transform(X_train)
X_test_vectorized = vectorizer.transform(X_test)
# Train a Naive Bayes classifier
clf = MultinomialNB()
clf.fit(X_train_vectorized, y_train)
# Make predictions
y_pred = clf.predict(X_test_vectorized)
# Print the classification report
print(classification_report(y_test, y_pred))
# Save the model and vectorizer
joblib.dump(clf, 'findtool_model.pkl')
joblib.dump(vectorizer, 'vectorizer.pkl')