Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,46 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
3 |
|
4 |
---
|
5 |
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- kritsadaK/EDGAR-CORPUS-Financial-Summarization
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
base_model:
|
10 |
+
- facebook/bart-large-cnn
|
11 |
+
---
|
12 |
+
# **BART Financial Summarization Model**
|
13 |
+
|
14 |
+
**Model Name:** `kritsadaK/bart-financial-summarization`
|
15 |
+
**Base Model:** `facebook/bart-large-cnn`
|
16 |
+
**Task:** Financial Text Summarization
|
17 |
+
**Dataset:** `kritsadaK/EDGAR-CORPUS-Financial-Summarization`
|
18 |
+
|
19 |
+
**Techniques:**
|
20 |
+
- Fine-tuned using the Hugging Face `Trainer` API
|
21 |
+
- Tokenized with `AutoTokenizer` (max length 1024 for input, 256 for summary)
|
22 |
+
- Optimized with AdamW, learning rate `2e-5`, batch size `2`, `fp16` enabled
|
23 |
+
- Evaluated using ROUGE scores
|
24 |
+
|
25 |
+
**Evaluation Results:**
|
26 |
+
- **Loss:** 1.18
|
27 |
+
- **Runtime:** 18.9 seconds
|
28 |
+
- **Samples per second:** 56.1
|
29 |
+
- **Steps per second:** 28.1
|
30 |
+
- **Epochs:** 3
|
31 |
+
|
32 |
+
**Usage Example (Python):**
|
33 |
+
```python
|
34 |
+
from transformers import pipeline
|
35 |
+
|
36 |
+
summarizer = pipeline("summarization", model="kritsadaK/bart-financial-summarization")
|
37 |
+
text = "Your financial document text here..."
|
38 |
+
summary = summarizer(text, max_length=256, min_length=50, do_sample=False)
|
39 |
+
print(summary)
|
40 |
+
```
|
41 |
+
|
42 |
|
43 |
+
The **Financial Statements Summary 10K Dataset** was developed as part of the **CSX4210: Natural Language Processing** project at **Assumption University**.
|
44 |
|
45 |
---
|
46 |
|