Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,65 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
pipeline_tag: object-detection
|
4 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
pipeline_tag: object-detection
|
4 |
+
---
|
5 |
+
# Nepal Vehicle License Plates Detection
|
6 |
+
|
7 |
+
```python
|
8 |
+
# Example Code: You can test this model on colab
|
9 |
+
|
10 |
+
# Install required libraries
|
11 |
+
!pip install ultralytics
|
12 |
+
!pip install PIL
|
13 |
+
|
14 |
+
# Import necessary libraries
|
15 |
+
from ultralytics import YOLO
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
from PIL import Image, ImageDraw
|
18 |
+
from google.colab import files
|
19 |
+
import requests
|
20 |
+
|
21 |
+
# Step 1: Download the model from Hugging Face
|
22 |
+
model_url = "https://huggingface.co/krishnamishra8848/Nepal_Vehicle_License_Plates_Detection_Version2/resolve/main/best.pt"
|
23 |
+
model_path = "best.pt"
|
24 |
+
|
25 |
+
# Download the model
|
26 |
+
print("Downloading the model...")
|
27 |
+
response = requests.get(model_url)
|
28 |
+
with open(model_path, 'wb') as f:
|
29 |
+
f.write(response.content)
|
30 |
+
print("Model downloaded!")
|
31 |
+
|
32 |
+
# Step 2: Load the model
|
33 |
+
model = YOLO(model_path)
|
34 |
+
|
35 |
+
# Step 3: Upload an image
|
36 |
+
print("Please upload an image to test:")
|
37 |
+
uploaded = files.upload()
|
38 |
+
image_path = list(uploaded.keys())[0]
|
39 |
+
|
40 |
+
# Step 4: Run inference
|
41 |
+
results = model(image_path)
|
42 |
+
|
43 |
+
# Step 5: Open the image and draw bounding boxes
|
44 |
+
img = Image.open(image_path)
|
45 |
+
draw = ImageDraw.Draw(img)
|
46 |
+
|
47 |
+
for box in results[0].boxes:
|
48 |
+
# Extract bounding box coordinates and class information
|
49 |
+
x_min, y_min, x_max, y_max = box.xyxy[0].tolist()
|
50 |
+
label = int(box.cls) # Class ID
|
51 |
+
confidence = float(box.conf) # Confidence score
|
52 |
+
|
53 |
+
# Draw bounding box
|
54 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
|
55 |
+
|
56 |
+
# Add label and confidence
|
57 |
+
text = f"Class {label}, {confidence:.2f}"
|
58 |
+
draw.text((x_min, y_min - 10), text, fill="red")
|
59 |
+
|
60 |
+
# Step 6: Display the image with bounding boxes
|
61 |
+
plt.figure(figsize=(10, 10))
|
62 |
+
plt.imshow(img)
|
63 |
+
plt.axis('off')
|
64 |
+
plt.show()
|
65 |
+
|